Hybrid Fine-Tuning of Large Language Models Using LoRA: Enhancing Multi-Task Text Classification Through Knowledge Sharing

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 38

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JECEI-13-2_014

تاریخ نمایه سازی: 19 تیر 1404

چکیده مقاله:

kground and Objectives: Large Language Models have demonstrated ‎exceptional performance across various NLP tasks, especially when fine-tuned for ‎specific applications.‎ Full fine-tuning of large language models requires extensive ‎computational resources, which are often unavailable in real-world settings. While ‎Low-Rank Adaptation (LoRA) has emerged as a promising solution to mitigate these ‎challenges, its potential remains largely untapped in multi-task scenarios. This ‎study addresses this gap by introducing a novel hybrid approach that combines ‎LoRA with an attention-based mechanism, enabling fine-tuning across tasks while ‎facilitating knowledge sharing to improve generalization and efficiency.‎ ‎ This study ‎aims to address this gap by introducing a novel hybrid fine-tuning approach using ‎LoRA for multi-task text classification, with a focus on inter-task knowledge sharing ‎to enhance overall model performance.‎Methods: We proposed a hybrid fine-tuning method that utilizes LoRA to fine-tune ‎LLMs across multiple tasks simultaneously. By employing an attention mechanism, ‎this approach integrates outputs from various task-specific models, facilitating ‎cross-task knowledge sharing. The attention layer dynamically prioritizes relevant ‎information from different tasks, enabling the model to benefit from ‎complementary insights. ‎Results: The hybrid fine-tuning approach demonstrated significant improvements ‎in accuracy across multiple text classification tasks. On different NLP tasks, the ‎model showed superior generalization and precision compared to conventional ‎single-task LoRA fine-tuning. Additionally, the model exhibited better scalability ‎and computational efficiency, as it required fewer resources to achieve comparable ‎or better performance. Cross-task knowledge sharing through the attention ‎mechanism was found to be a critical factor in achieving these performance gains.‎Conclusion: The proposed hybrid fine-tuning method enhances the accuracy and ‎efficiency of LLMs in multi-task settings by enabling effective knowledge sharing ‎between tasks. This approach offers a scalable and resource-efficient solution for ‎real-world applications requiring multi-task learning, paving the way for more ‎robust and generalized NLP models. ‎

نویسندگان

A. Beiranvand

Department of Computer Engineering, University of Kashan, Kashan, Iran.

M. Sarhadi

Department of Computer Engineering, University of Kashan, Kashan, Iran.

J. Salimi Sartakhti

Department of Computer Engineering, University of Kashan, Kashan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • K. I. Roumeliotis, N. D. Tselikas, "Chatgpt and open-ai models: ...
  • T. Brown et al., "Language models are few-shot learners," in ...
  • J. Devlin, M. W. Chang, K. Lee, K. Toutanova, "Bert: ...
  • K. Lv, Y. Yang, T. Liu, Q. Gao, Q. Guo, ...
  • E. J. Hu et al., "Lora: Low-rank adaptation of large ...
  • H. Touvron et al., "Llama ۲: Open foundation and fine-tuned ...
  • Hugging Face. https://huggingface.co/, ۲۰۲۳ ...
  • Eric Wang. Alpaca-lora. https://github.com/tloen/alpaca-lora, ۲۰۲۳ ...
  • A. Vaswani et al., "Attention is all you need," in ...
  • J. Achiam et al., "Gpt-۴ technical report," arXiv preprint arXiv:۲۳۰۳.۰۸۷۷۴, ...
  • C. Raffel et al., "Exploring the limits of transfer learning ...
  • D. Narayanan et al., "Efficient large-scale language model training on ...
  • O. Sharir, B. Peleg, Y. Shoham, "The cost of training ...
  • S. Mangrulkar, S. Gugger, L. Debut, Y. Belkada, S. Paul, ...
  • A. Hernández, J. M. Amigó, "Attention mechanisms and their applications ...
  • S. Dathathri et al., "Plug and play language models: A ...
  • C. Sun, X. Qiu, Y. Xu, X. Huang, "How to ...
  • I. Yamada, A. Asai, H. Shindo, H. Takeda, Y. Matsumoto, ...
  • R. Nogueira, K. Cho, "Passage Re-ranking with BERT," arXiv preprint ...
  • D. Khashabi et al., "Unifiedqa: Crossing format boundaries with a ...
  • J. Pfeiffer et al., "Adapterhub: A framework for adapting transformers," ...
  • X. L. Li, P. Liang, "Prefix-tuning: Optimizing continuous prompts for ...
  • A. C. Stickland, I. Murray, "Bert and pals: Projected attention ...
  • L. Zhang, L. Zhang, S. Shi, X. Chu, B. Li, ...
  • D. Cer et al., "Universal sentence encoder," arXiv preprint arXiv:۱۸۰۳.۱۱۱۷۵, ...
  • N. Shazeer et al., "Outrageously large neural networks: The sparsely-gated ...
  • X. Wang, L. Aitchison, M. Rudolph, "LoRA ensembles for large ...
  • A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, ...
  • A. Maas, R. E. Daly, P. T. Pham, D. Huang, ...
  • X. Zhang, J. Zhao, Y. LeCun, "Character-level convolutional networks for ...
  • X. Li, D. Roth, "Learning question classifiers," in Proc. COLING ...
  • V. Sanh, L. Debut, J. Chaumond, T. Wolf, "DistilBERT, a ...
  • K. Clark, M.-T. Luong, Q. V. Le, C. D. Manning, ...
  • T. Wolf et al., "Transformers: State-of-the-art natural language processing," in ...
  • نمایش کامل مراجع