A Hybrid Three-layered Approach for Intrusion Detection using Machine Learning Methods

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 34

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JECEI-13-2_016

تاریخ نمایه سازی: 19 تیر 1404

چکیده مقاله:

kground and Objectives: Intrusion Detection Systems (IDS) are crucial for safeguarding computer networks. However, they face challenges such as detecting subtle intrusions and novel attack patterns. While signature-based and anomaly-based IDS have been widely used, hybrid approaches offer a promising solution by combining their strengths. This study aims to develop a robust hybrid IDS that effectively addresses these challenges.Methods: We propose a three-layered hybrid IDS that leverages machine learning techniques. The first layer utilizes a signature-based approach to identify known intrusions. The second layer employs an anomaly-based approach with unsupervised learning to detect unknown intrusions. The third layer utilizes supervised learning to classify intrusions based on training data. We evaluated the proposed system on the NSL-KDD dataset.Results: Experimental results demonstrate the effectiveness of our proposed hybrid IDS in accurately detecting intrusions. Comparisons with recent studies using the same dataset show that our system outperforms existing approaches in terms of detection accuracy and robustness.Conclusion: Our research presents a novel hybrid IDS that effectively addresses the limitations of traditional IDS methods. By combining signature-based, anomaly-based, and supervised learning techniques, our system can accurately detect both known and unknown intrusions. The promising results obtained from our experiments highlight the potential of this approach in enhancing network security.

نویسندگان

A. Beigi

Artificial Intelligence Department, Faculty of Computer Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • A. Thakkar, R. Lohiya, "A survey on intrusion detection system: ...
  • S. Venkatesan, "Design an intrusion detection system based on feature ...
  • A. Thakkar, R. Lohiya, "A review of the advancement in ...
  • M. Sabhnani, G. Serpen, "KDD feature set complaint heuristic rules ...
  • A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, "Survey of ...
  • S. Aljawarneh, M. Aldwairi, M. B. Yassein, "Anomaly-based intrusion detection ...
  • R. A. R. Ashfaq, X. Z. Wang, J. Z. Huang, ...
  • I. Goodfellow, Y. Bengio, A. Courville, “۶.۵ Back-Propagation and Other ...
  • C. Guo, Y. Ping, N. Liu, S. S. Luo, "A ...
  • P. Kar, S. Banerjee, K. C. Mondal, G. Mahapatra, S. ...
  • V. Hajisalem, S. Babaie, "A hybrid intrusion detection system based ...
  • W. L. Al-Yaseen, Z. A. Othman, M. Z. A. Nazri, ...
  • C. Yin, Y. Zhu, J. Fei, X. He, "A deep ...
  • Y. Gao, Y. Liu, Y. Jin, J. Chen, H. Wu, ...
  • B. A. Tama, M. Comuzzi, K. H. Rhee, "TSE-IDS: A ...
  • S. Naseer, Y. Saleem, S. Khalid, M. K. Bashir, J. ...
  • P. Illy, G. Kaddoum, C. M. Moreira, K. Kaur, S. ...
  • Y. Yang, K. Zheng, C. Wu, Y. Yang, "Improving the ...
  • R. Zhao, Y. Mu, L. Zou, X. Wen, "A hybrid ...
  • S. Huang, K. Lei, "IGAN-IDS: An imbalanced generative adversarial network ...
  • P. Bedi, N. Gupta, V. Jindal, "I-SiamIDS: an improved Siam-IDS ...
  • K. Jiang, W. Wang, A. Wang, H. Wu, "Network intrusion ...
  • Z. Hu, L. Wang, L. Qi, Y. Li, W. Yang, ...
  • T. Su, H. Sun, J. Zhu, S. Wang, Y. Li, ...
  • M. Latah, L. Toker, "Minimizing false positive rate for DoS ...
  • Y.Tang, L. Gu, L. Wang, "Deep Stacking Network for Intrusion ...
  • Y. Yuliana, D. H. Supriyadi, M. R. Fahlevi, M. R. ...
  • N. G. Pardeshi, D. V. Patil, "Binary and Multiclass Classification ...
  • D. Gümüşbaş, T. Yıldırım, A. Genovese, F. Scotti, "A comprehensive ...
  • M. Tavallaee, E. Bagheri, W. Lu, A. A. Ghorbani, "A ...
  • N. B. Aissa, M. Guerroumi, "A genetic clustering technique for ...
  • D. Greiner, J. Periaux, D. Quagliarella, J. Magalhaes-Mendes, B. Galvan, ...
  • F. Salo, A. B. Nassif, A. Essex, "Dimensionality reduction with ...
  • P. Mishra, V. Varadharajan, U. Tupakula, E. S. Pilli, "A ...
  • Q. M. Alzubi, M. Anbar, Z. N. Alqattan, M. A. ...
  • N. T. Pham, E. Foo, S. Suriadi, H. Jeffrey, H. ...
  • H. H. Pajouh, G. Dastghaibyfard, S. Hashemi, "Two-tier network anomaly ...
  • N. Paulauskas, J. Auskalnis, "Analysis of data pre-processing influence on ...
  • نمایش کامل مراجع