AI-Driven Strategies for Supply Chain Resilience: A Review of Challenges and Solutions During Pandemics

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 66

فایل این مقاله در 21 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-39-3_003

تاریخ نمایه سازی: 18 تیر 1404

چکیده مقاله:

The COVID-۱۹ pandemic exposed critical vulnerabilities in global supply chains, underscoring the urgent need for adaptive, data-driven strategies. While Artificial Intelligence (AI) and Machine Learning (ML) are recognized as enablers of resilience, existing literature lacks a systematic synthesis of their pandemic-specific applications across industries. This review addresses this gap by analyzing how AI/ML technologies mitigated disruptions, their sector-specific effectiveness, and implementation challenges. Through a systematic examination of available studies, we evaluate applications spanning blockchain-enabled traceability in healthcare supply chains to deep learning models for demand volatility in retail. Key contributions include: (۱) a Resilience-Adaptation Framework aligning AI/ML solutions with disruption severity and organizational agility, (۲) empirical evidence of AI/ML’s role in enhancing transparency and reducing bottlenecks in critical sectors like pharmaceuticals, and (۳) identification of ethical risks, including biases in crisis-driven decision-making. The study further proposes integrating AI/ML with IoT and digital twins to future-proof supply chains against systemic shocks. By consolidating fragmented insights and offering strategic pathways, this review advances scholarly discourse and equips practitioners with actionable strategies to transform supply chains into proactive, crisis-ready systems.

نویسندگان

A. Salehi

Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran

A. Babaei

Department of Industrial Engineering, Information Technology Engineering Group, K. N. Toosi University of Technology, Tehran, Iran

H. Hamidi

Department of Industrial Engineering, Information Technology Engineering Group, K. N. Toosi University of Technology, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Fallahi A, Pourghazi A, Mokhtari H. A multi-product humanitarian supply ...
  • El-Hiri M, En-Nadi A, Chafi A. Suppliers selection in consideration ...
  • نمایش کامل مراجع