Task Scheduling in Intelligent Edge of ۵G -Enabled AI -Industrial IoT Using DL-LSTM -AQL

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 53

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

EECMAI11_047

تاریخ نمایه سازی: 11 تیر 1404

چکیده مقاله:

Artificial Intelligence (AI) is a great technology for Industrial Internet of Things (IoT), which has led to the emergence of AI -Industrial IoT to support Industrial IoT intelligent applications. The complex AI tasks of AI -based applications require complex servers to process. This causes high Energy Consumption (EC). Therefore, in AI -Industrial IoT equipped to ۵G (۵G -Enabled AI -Industrial IoT) and edge computing Computing (IECo), increase the processing speed of intelligent services at lower cost than the cloud -based IoT, which leads to reduced delay and reduced EC. This paper deals with the EC of edge devices and heterogeneous architecture and cloud services in processing of ۵G -Enabled AI -Industrial IoT tasks, processing delay and Task Scheduling (TSch) problem formulation in edge and cloud using Deep Learning Long -Short -Term Memory (LSTM) Attention Q -Learning (DL -LSTM -AQL). The performance evaluation based on extensive simulation indicated that this framework outperforms other methods with less EC, and it can be less delay using ۵G.

کلیدواژه ها:

Industrial Internet of Things ، Intelligent Edge Computing ، Task Scheduling ، Artificial Intelligence ، Long -Short -Term - Memory and Q -Learning

نویسندگان

Mitra Akbari kohnehshahri

Field:Information technology engineering -communication and computer networks -Bu-ali sina university

Farshad Abdi

Faculty of Mechanics, Electrical Power and Computer, Islamic Azad University, Science and Research Branch, Tehran, Iran, MSc student in System Telecommunications

Najmeh Dehghani

Master of Science in Computer Engineering -Software, Islamic Azad University, Tehran Science and Research Branch (Fars), Iran

Mohammad Sadeghzadeh

Computer Engineering Department, Faculty of Engineering, Bu Ali Sina University