Variational approach to optimal control constrained by fractal-fractional differential equations

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 41

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JCAM-56-3_004

تاریخ نمایه سازی: 8 تیر 1404

چکیده مقاله:

The extant corpus of literature pertaining to optimal control problems with partial differential equation (PDE) constraints is extensive. This paper introduces a novel variational approach to optimal control problems constrained by fractal-fractional differential equations. Utilizing the shallow water wave as a case study, the semi-inverse method is employed to establish the variational formulation. This approach not only exemplifies a novel mode of thinking but also has significant ramifications for the field. This novel approach to optimal control paves a promising path for further research and provides researchers and practitioners with a novel perspective and potential avenues for further exploration. By exploring this alternative approach, researchers and practitioners can develop a more profound understanding of the fundamental nature of optimal control problems and identify more effective solutions for a wide range of applications.

نویسندگان

Yue Cheng

School of Information Engineering, Yango University, Fuzhou ۳۵۰۰۱۵, China

Jia-Hong Zhu

School of Information Engineering, Yango University, Fuzhou ۳۵۰۰۱۵, China

Peng-Bin Luo

School of Information Engineering, Yango University, Fuzhou ۳۵۰۰۱۵, China

Yue Shen

School of Science, Xi&#۰۳۹;an University of Architecture and Technology, Xi’an ۷۱۰۰۵۵, China

JI-Huan He

Department of Mathematical Sciences, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. Hinze, R. Pinnau, M. Ulbrich, S. Ulbrich, Optimization with ...
  • T. Tindano, M. Soma, S. Tao, S. Sawadogo, OPTIMAL CONTROL ...
  • S. Garg, N. Rani, OPTIMIZING MAINTENANCE STRATEGIES OF COIL SHOP: ...
  • D. Zambelongo, M. Kere, S. Sawadogo, OPTIMAL HARVESTING STRATEGY FOR ...
  • W. N. A. W. Ahmad, S. F. Sufahani, M. A. ...
  • M. Itik, M. U. Salamci, S. P. Banks, Optimal control ...
  • A. Mang, A. Gholami, C. Davatzikos, G. Biros, PDE-constrained optimization ...
  • A. Perec, A. Radomska-Zalas, A. Fajdek-Bieda, F. Pude, PROCESS OPTIMIZATION ...
  • Y. Shen, N. Yan, Z. Zhou, Convergence and quasi-optimality of ...
  • Y. Shen, W. Gong, N. Yan, Convergence of adaptive nonconforming ...
  • W. N. A. W. Ahmad, S. F. Sufahani, M. A. ...
  • A. T. Ramazanova, NECESSARY CONDITIONS FOR OPTIMALITY IN ONE NONSMOOTH ...
  • W. N. A. W. Ahmad, S. F. Sufahani, M. A. ...
  • Y. Wu, G.-Q. Feng, Variational principle for an incompressible flow, ...
  • K.-L. WANG, C.-H. HE, A REMARK ON WANG’S FRACTAL VARIATIONAL ...
  • New Variational Principles for Two Kinds of Nonlinear Partial Differential Equation in Shallow Water [مقاله ژورنالی]
  • X.-Q. CAO, S.-C. HOU, Y.-N. GUO, C.-Z. ZHANG, K.-C. PENG, ...
  • H. Ma, Variational principle for a generalized Rabinowitsch lubrication, Thermal ...
  • Y. Shao, Y. Cui, Mathematical approach for rapid determination of ...
  • Y. ZHANG, N. ANJUM, D. TIAN, A. A. ALSOLAMI, FAST ...
  • C.-H. He, C. Liu, FRACTAL DIMENSIONS OF A POROUS CONCRETE ...
  • C.-H. He, H.-W. Liu, C. Liu, A FRACTAL-BASED APPROACH TO ...
  • H. Liu, Y. Wang, C. Zhu, Y. Wu, C. Liu, ...
  • C.-H. HE, C. LIU, A MODIFIED FREQUENCY–AMPLITUDE FORMULATION FOR FRACTAL ...
  • Y.-P. LIU, C.-H. HE, K. A. GEPREEL, J.-H. HE, CLOVER-INSPIRED ...
  • X.-X. Li, Y.-C. Luo, A. A. Alsolami, J.-H. He, Elucidating ...
  • Y.-P. Liu, J.-H. He, M. H. Mahmud, Leveraging Lotus Seeds’ ...
  • J.-J. Liu, Two-dimensional heat transfer with memory property in a ...
  • J.-F. Lu, L. Ma, Analysis of a fractal modification of ...
  • L. Zhang, K. A. Gepreel, J. Yu, He’s frequency formulation ...
  • J.-H. He, Variational principles for some nonlinear partial differential equations ...
  • J. Sun, Fractal solitary waves of the (۳+ ۱)-dimensional fractal ...
  • C.-H. He, C. Liu, Variational principle for singular waves, Chaos, ...
  • C. Zhou, J. Hong, S. Lai, Sufficient conditions of blowup ...
  • Y. WANG, W. HOU, K. GEPREEL, H. LI, A FRACTAL-FRACTIONAL ...
  • Y. WANG, Q. DENG, FRACTAL DERIVATIVE MODEL FOR TSUNAMI TRAVELING, ...
  • F.-Y. Wang, J.-S. Sun, Solitary wave solutions of the Navier-Stokes ...
  • C.-H. Shang, H.-A. Yi, Solitary wave solution for the non-linear ...
  • X.-Q. Cao, S.-H. Xie, H.-Z. Leng, W.-L. Tian, J.-L. Yao, ...
  • C.-H. He, A variational principle for a fractal nano/microelectromechanical (N/MEMS) ...
  • نمایش کامل مراجع