AI-Driven Operational Strategies for Enhancing Economic Resilience and Innovation in Modern Industries
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 53
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
MAEBCONF09_037
تاریخ نمایه سازی: 8 تیر 1404
چکیده مقاله:
This study explores how AI-driven operational strategies enhance economic resilience and innovation across modern industries, addressing a critical gap in integrating AI applications with resilience outcomes. Focusing on manufacturing, logistics, healthcare, and tourism, it contributes a novel cross-sectoral framework linking AI adoption to operational effectiveness, innovation, and economic stability amid disruptions like COVID-۱۹. Using a secondary research methodology, data from peer-reviewed journals (e.g., Scopus), industry reports (e.g., McKinsey, ۲۰۲۱), and case studies were analyzed via PESTLE, SWOT, and qualitative content analysis. Findings show AI optimizes supply chains (e.g., Amazon’s ۲۰% cost reduction), enhances decision-making (e.g., Siemens’ ۲۵–۳۰% downtime reduction), improves resource efficiency (e.g., ۲۰% yield increase in Brazil’s agriculture), and drives innovation (e.g., BMW’s ۴۰% faster prototyping). Emerging market examples, like India and South Africa, broaden global relevance. Compared to prior work, this study quantifies resilience benefits, revealing AI’s dual role as a resilience enabler and innovation catalyst. Industry can leverage AI for adaptability, policymakers should promote equitable access with ethical guidelines (e.g., OECD AI Principles), and academia can explore SMEs and workforce impacts. While robust, reliance on secondary data suggests primary research (e.g., interviews) for future validation, advancing Industry ۴.۰ scholarship.
کلیدواژه ها:
نویسندگان
Hanieh Touhidinia
Independent Researcher, Kashan, Iran