Seismic Retrofitting of Reinforced Concrete Structures Using GFRP Materials and the Role of Artificial Intelligence in Performance Optimization

فایل این در 7 صفحه با فرمت PDF قابل دریافت می باشد

  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این :

چکیده :

Reinforced concrete (RC) structures are highly vulnerable to seismic loads, which has led to increased interest in effective retrofitting methods. Among various techniques, Glass Fiber Reinforced Polymer (GFRP) composites have become prominent due to their lightweight nature, high tensile strength, and corrosion resistance. This paper outlines the fundamental concepts of seismic retrofitting and highlights the benefits and limitations of GFRP materials. Several application methods for retrofitting RC structures with GFRP are discussed. Furthermore, the integration of Artificial Intelligence (AI), especially machine learning (ML) techniques and Artificial Neural Networks (ANNs), into the field of seismic retrofitting is explored. These AI tools are capable of evaluating structural performance, predicting seismic behavior, and optimizing retrofit designs. By combining traditional structural engineering principles with modern AI technologies, more accurate and efficient retrofitting strategies can be developed. The paper aims to present a concise yet informative overview of how GFRP and AI can be jointly used to enhance seismic resilience.

نویسندگان

مجید محبی

Majid Mohebi, M.Sc. Graduate in Civil Engineering – Structural Engineering, Tohid Golugah Institute of Higher Education, Mazandaran, Iran

مراجع و منابع این :

لیست زیر مراجع و منابع استفاده شده در این را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود لینک شده اند :
  • [1] ACI Committee 440. (2015). Guide for the Design and ...
  • [2] FIB Bulletin 14. (2001). Externally Bonded FRP Reinforcement for ...
  • [3] Farzad, M., & Mosallam, A. S. (2022). Structural performance ...
  • [4] Xie, T., et al. (2021). Application of machine learning ...
  • [5] Hosseini, A., & Gandomi, A. H. (2020). Soft computing ...
  • [6] Al-Saadi, S. H., & Rasheed, H. M. (2019). Behavior ...
  • [7] Soudki, K. A., & Hama, A. A. (2017). Seismic ...
  • [8] Nanni, A. (2012). FRP Reinforcement in Structural Concrete. CRC ...
  • [9] Chaallal, O., & Higuera, C. (2003). Strengthening of reinforced ...
  • [10] Li, W., et al. (2020). Machine learning approaches for ...
  • [11] Gandomi, A. H., & Roke, D. A. (2019). Artificial ...
  • [12] Saadatmanesh, H., & Ehsani, M. R. (1991). Strengthening of ...
  • [13] Lee, J., & Kim, S. (2018). Seismic performance evaluation ...
  • [14] Deb, S. K., & Stojadinovic, B. (2014). AI-based modeling ...
  • [15] Soudki, K. A., & Ghaleb, M. A. (2015). Durability ...
  • نمایش کامل مراجع