Resource Allocation Optimization for Multi-Target Detection and Tracking in Cognitive Radar Networks
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 14
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_COAM-10-1_004
تاریخ نمایه سازی: 1 تیر 1404
چکیده مقاله:
This paper addresses the challenges of power control, radar assignment, and signal timing to improve the detection and tracking of multiple targets within a mono-static cognitive radar network. A fusion center is utilized to integrate target velocity data gathered by radars. The primary objective is to minimize the mean square error in target velocity estimation while adhering to constraints related to global detection probability and total radar power consumption for effective target detection and tracking. The optimization problem is formulated and a low-complexity method is proposed using the genetic algorithm (GA). In this approach, the radars and their transmission powers are represented as chromosomes and the network's quality of service (QoS) requirements serve as inputs to the GA. The output of the GA is the mean error square of the target velocity estimation. Once the problem is resolved, the power allocation for each radar assigned to a specific target is determined. Simulation results demonstrate the effectiveness of the proposed algorithm in enhancing detection performance and improving tracking accuracy when compared to other benchmark algorithms.
کلیدواژه ها:
نویسندگان
Maryam Najimi
Department of Electrical and Computer Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
Akbar Hashemi Borzabadi
Department of Applied Mathematics, University of Science and Technology of Mazandaran, Behshahr, Iran..
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :