Numerical Study of the Passive Motion of Airfoils in Porous Media

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 10

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JAFM-18-8_015

تاریخ نمایه سازی: 1 تیر 1404

چکیده مقاله:

This study proposes adding a porous medium layer to the leading edge of a rigid airfoil and investigates the influence of various porous medium properties on the passive propulsion performance of the airfoil in a Kármán vortex street, using numerical simulation methods. By employing a control variable approach, the study compares the force and motion characteristics of airfoils with nine different porosities and permeabilities under both the incoming flow mode and Kármán vortex street conditions. Porosity (ε) is a parameter that describes the fraction of void volume relative to the total volume in a porous medium, ranging from ε=۰.۲ to ε=۰.۹۲. This parameter determines the ability of fluid to penetrate the medium, with higher porosity allowing more fluid flow, thus significantly affecting the flow field structure. Permeability (α), ranging from ۱۰−۱۲ m۲ to ۱۰−۸ m۲, indicates the ease with which fluid can pass through the porous medium and is a key factor in determining the flow resistance. Both porosity and permeability play crucial roles in the flow field and aerodynamic performance of the airfoil, and their interaction jointly regulates the formation of flow patterns and propulsion efficiency. The results show that under the incoming flow mode, the porous medium can significantly reduce the drag on the airfoil, with lower permeability leading to smaller aerodynamic forces. For high-permeability airfoils, drag reduction can be further achieved by lowering the porosity. In the Kármán vortex street, as both porosity and permeability decrease, the airfoil experiences reduced thrust, with an increase in horizontal displacement and a decrease in lateral deviation after release. This study deepens the understanding of passive propulsion phenomena in natural Kármán vortex streets and provides theoretical guidance and technical recommendations for related engineering applications.

نویسندگان

J. Tang

School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai ۲۰۰۰۹۳, China

Z. Zhou

School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai ۲۰۰۰۹۳, China

Y. Zhang

Centre for Innovative Energy Technologies, The University of Newcastle, Callaghan, NSW ۲۳۰۸, Australia

B. Moghtaderi

Centre for Innovative Energy Technologies, The University of Newcastle, Callaghan, NSW ۲۳۰۸, Australia

Y. Wang

School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai ۲۰۰۰۹۳, China

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Aguiar, J., Birch, D. M., & Pelacci, M. (۲۰۱۸). Wake ...
  • ANSYS Inc. (۲۰۱۸). ANSYS help ۱۹.۰: Fluent theory guide. Pennsylvania: ...
  • Bear, J. (۱۹۷۲). Dynamics of fluids in porous media. New ...
  • Bejan, A. (۱۹۹۵). Convection in porous media. Convection Heat Transfer,۱-۶۲۳ ...
  • Du, H., Zhang, Q., He, L., et al. (۲۰۲۲). Study ...
  • Ergun, S, & Orning, A. A. (۱۹۴۹). Fluid flow through ...
  • Hu, Z., Liu, H., Chen, N., & Hu, J. W. ...
  • Igarashi, T. (۱۹۸۲). Flow characteristics around a circular cylinder with ...
  • Jiang, M. J. (۲۰۲۱). Study on the winding flow characteristics ...
  • Langtry, R. (۲۰۱۱). A correlation-based transition model using local variables ...
  • Li, C. L. (۲۰۰۳). Relationship between rock compression coefficient and ...
  • Li, F., Hao, L., Bao, H., & Gao Y. (۲۰۲۵). ...
  • Liu, J. Y. (۲۰۲۲). Research on the suppression mechanism of ...
  • Naito, H., & Fukagata, K. (۲۰۱۲). Numerical simulation of flow ...
  • Peng, B., Miau, J., Bao, F., L. D. Weng, C. ...
  • Ruck, B., Klausmann, K., & Wacker, T. (۲۰۱۲). The flow ...
  • Spalart, P. R. (۲۰۰۰). Strategies for turbulence modelling and simulations. ...
  • Wei, Z., Yang, Z., Xia, C., et al. (۲۰۱۶). Experimental ...
  • Whitaker, S. (۱۹۹۶). The forchheimer equation: A theoretical development. Transport ...
  • Zamponi, R., Satcunanathan, S., Moreau, S., Ragni, D., & Meinke, ...
  • Zhang, Y., Liu, Y., & Xiangl, Q. (۲۰۲۴). Numerical analysis ...
  • Zhou, Z., Huang, S., & Wang, Y. (۲۰۲۳). Numerical simulation ...
  • نمایش کامل مراجع