Predicting Student Academic Performance: A Machine Learning Approach and Feature Analysis
محل انتشار: مجله ایرانی مطالعات مدیریت، دوره: 18، شماره: 3
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 6
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JIJMS-18-3_002
تاریخ نمایه سازی: 27 خرداد 1404
چکیده مقاله:
Predicting student academic performance is a challenging task and, at the same time, has significant implications for educators and policymakers in the field of education. By utilizing machine learning techniques, this article seeks to explore the relationship between various features across six categories: demographic factors, personality traits, skills, favorite activities, relationships with others, out-of-school activities on one hand, and academic performance in terms of Grade Point Average, on the other. The data utilized in this study has been collected through several surveys conducted in one of the schools in Iran over multiple years and educational levels, which form the basis of the analysis. Using CRISP-DM methodology, a predictive model is developed based on CatBoost Regressor. A predictive model with an R-squared value of ۰.۸۷ is developed. Moreover, the analysis of feature importance reveals that positive personality traits such as "Interest in studying," "The quality of homework," "Contentment," "Self-regulation," and "Logical thinking and reasoning" skills are among the most predictive features affecting students' academic performance which is rooted in and supported by some of the well-known psychological theories such as Self-Determination Theory. The contribution of the current research includes the development of a highly accurate prediction model based on the machine learning approach to predict student academic performance in terms of their GPA and to extract the most important features that influence it. This study is unique in this field due to the incorporation of various features and data collection across different years and educational stages.
کلیدواژه ها:
Educational Data Mining (EDM) ، Machine learning ، Academic Performance ، intrinsic motivation ، regression algorithms ، Self-Regulation
نویسندگان
Maryam Taher Mazandarani
Department of Information Technology Management, University of Tehran, Tehran, Iran
Zahra Zand
Department of Information Technology Management, University of Tehran, Tehran, Iran
Mohammad Hossein Khodabandelou
Department of Industrial Management, Islamic Azad University, Tehran, Iran
Fatemeh Mozaffari
Department of Information Technology Management, University of Tehran, Tehran, Iran
Babak Sohrabi
Department of Information Technology Management, University of Tehran, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :