Flow Pattern and Oil Holdup Prediction in Vertical Oil–Water Two–Phase Flow Using Pressure Fluctuation Signal

سال انتشار: 1396
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 53

فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJCCE-36-2_012

تاریخ نمایه سازی: 17 خرداد 1404

چکیده مقاله:

In this work, the feasibility of flow pattern and oil hold up the prediction for vertical upward oil–water two–phase flow using pressure fluctuation signals was experimentally investigated. Water and diesel fuel were selected as immiscible liquids. Oil hold up was measured by Quick Closing Valve (QCV) technique, and five flow patterns were identified using high-speed photography through a transparent test section with Inner Diameter (ID) of ۰.۰۲۵۴ m. The observed flow patterns were Dispersed Oil in Water (D O/W), Dispersed Water in Oil (D W/O), Transition Flow (TF), Very FineDispersed Oil in Water (VFD O/W) and a new flow pattern called Dispersed Oil Slug & Water in Water (D OS& W/W). The pressure fluctuation signals were also measured by a static pressure sensor and decomposed at five levels using wavelet transform. Then, standard deviation values of decomposition levels were used as input parameters of a Probabilistic Neural Network (PNN) to train the network for predicting the flow patterns. In addition, some considered numerical values for actual flow patterns together with the signal energy value of each level were used as input parameters of a MultiLayer Perceptron (MLP) network to estimate the oil holdup. The results indicated good accuracy for recognition of the flow patterns (accuracy of ۱۰۰% and ۹۵.۸% for training data and testing data, respectively) and oil holdup (AAPE=۹.۶%, R=۰.۹۸۴ for training data and AAPE=۸.۰۷%, R=۰.۹۹ for testing data).

نویسندگان

Sadra Azizi

Department of Chemical Engineering, Yasouj University, P.O. Box ۷۵۹۱۴-۳۵۳ Yasouj, I.R. IRAN

Hajir Karimi

Department of Chemical Engineering, Yasouj University, P.O. Box ۷۵۹۱۴-۳۵۳ Yasouj, I.R. IRAN

Parviz Darvishi

Department of Chemical Engineering, Yasouj University, P.O. Box ۷۵۹۱۴-۳۵۳ Yasouj, I.R. IRAN

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Azizi S., Awad M.M., Ahmadloo E., Prediction of Water Holdup ...
  • Govier G.W., Sullivan G.A., Wood R.K., The Upward Vertical Flow ...
  • Flores J.G., Chen X.T., Sarica C., Brill J.P., Characterization of ...
  • Jana K., Das G., Das P.K., Flow Regime Identification of ...
  • Du M., Jin N.D., Gao Z.K, Wang Z.Y., Zhai L.S., ...
  • Mydlarz–Gabryk K., Pietrzak M., Troniewski L., Study on Oil–Water Two–Phase ...
  • Parker D.J., McNeil P.A., Positron Emission Tomography for Process Applications, ...
  • Bemrose C.R., Fowles P., Hawkesworth M.R., O’Dwyer M.A., Application of ...
  • Mantle M.D., Sederman A.J., Dynamic MRI in Chemical Process and ...
  • Holland D.J., Müller C.R., Dennis J.S., Gladden L.F., Davidson J.F., ...
  • Reyes Jr. J.N., Lafi A.Y., Saloner D., The Use of ...
  • Bieberle M., Fischer F., Schleicher E., Hampel U., Koch D., ...
  • Kumar S.B., Moslemian D., Duduković M., A γ–Ray Tomographic Scanner for ...
  • Yang M., Schlaberg H.I., Hoyle B.S., Beck M.S., Lenn C., ...
  • Liang F., Zheng H., Yu H., Sun Y., Gas–Liquid Two–Phase ...
  • Geraets J.J.M., Borst J.C., A Capacitance Sensor for Two–Phase Void ...
  • Xie C.G., Reinecke N., Beck M.S, Mewes D., Williams R.A., ...
  • Prasser H.M., Böttger A., Zschau J., A New Electrode–Mesh Tomograph ...
  • Liu W., Tan C., Dong F., A Wire–Mesh Sensor for ...
  • Smith A.V., Transient Density Measurements in Two–Phase Flows Using X–Rays, ...
  • Eberle C.S., Lenug W.H., Ishii M., Revankar S.T., Optimization of ...
  • Luggar R.D., Key M.J., Morton E.J., Gilboy W.B., Energy Dispersive ...
  • Da Silva M.J., Schleicher E., Hampel U., Capacitance Wire–Mesh Sensor ...
  • Shaban, H.; Tavoularis, S, The Wire–Mesh Sensor as a Two–Phase ...
  • Tsouris C., Norato M.A., Tavlarides L.L., A Pulse–Echo Ultrasonic Probe ...
  • Strizzolo C., Converti J., Capacitance Sensors for Measurement of Phase ...
  • Lucas G.P., Mishra R., Measurement of Bubble Velocity Components in ...
  • Huang S.F., Zhang X.G., Wang D., Lin Z.H., Water Holdup ...
  • Demoria M., Ferrari V., Strazza D., Poesio P., Capacitive Sensor ...
  • Strazza D., Demori M., Ferrari V., Poesio P., Capacitance Sensor ...
  • Sardeshpande M.V., Harinarayan S., Ranade V.V., Void Fraction Measurement Using ...
  • Shang Z., Yang R., Gao X., Yang Y., An Investigation ...
  • Zhen L., Hassan Y.A., Wavelet Autocorrelation Identification of the Turbulent ...
  • Chakrabarti D.P., Das G., Das P.K., Identification of Stratified Liquid–Liquid ...
  • Zong Y.B., Jin N.D., Multi–Scale Recurrence Plot Analysis of Inclined ...
  • Nguyen V.T., Euh D.J., Song C.H., An Application of the ...
  • Tan C., Li P., Dai W., Dong F., Characterization of ...
  • Drahos J., Zahradnik J., Puncochar M., Fialova M., Bradka F., ...
  • Rosa E.S., Salgado R.M., Ohishi T., Mastelari N., Performance comparison ...
  • Han Y.F., Zhao A., Zhang H.X., Ren Y.Y., Liu W.X., ...
  • Drahos J., Cermak J., Diagnostics of Gas–Liquid Flow Patterns in ...
  • Park S.H., Kang Y., Kim S.D., Wavelet Transform Analysis of ...
  • Yang, T.Y., Leu, L.P., Study of Transition Velocities from Bubbling ...
  • Matsui G., Identification of Flow Regimes in Vertical Gs Liquid ...
  • Elperin T., Klochko M., Flow Regime Identification in a Two–Phase ...
  • Sun Z., Shao S., Gong H., Gas–Liquid Flow Pattern Recognition ...
  • Brauner N., Moalem Maron D., Stability Analysis of Stratified Liquid–Liquid ...
  • Marseguerra M., Minoggio S., Rossi A., Zlo E., Artificial Neural ...
  • Cai S., Toral H., Qiu J., Archer J.S., Neural Network ...
  • Antonopoulosdomis M., Tambouratzis T., Artificial Neural Networks for Neutron Source ...
  • Xie T., Ghiasasiaan S.M., Karrila S., Flow Regime Identification in ...
  • Peng Z., Yin H., ECT and LS–SVM Based Void Fraction ...
  • Salgado C.M., Pereira C.M.N.A., Schirru R., Brandão L.E.B., Flow Regime ...
  • Zhang C., Zhang T., Yuan C., Oil holdup Prediction of ...
  • Bin S., Hong W., Identification Method of Gas–Liquid Two–Phase Flow ...
  • Nazemi E., Feghhi S.A.H., Roshani G.H., Gholipour Peyvandi R., Setayeshi ...
  • Cong T., Su G., Qiu S., Tian W., Applications of ...
  • Daubechies I., The Wavelet Transform, time–Frequency Localization and Signal Analysis, ...
  • Daubechies I., "Ten lectures on Wavelets. Society for Industrial and ...
  • Jana K., Das G., Das P.K., The hydrodynamics of Liquid–Liquid ...
  • Jafari, M.R., Salahshoor K., Adaptive Predictive Controllers Using a Growing ...
  • Azari A, Shariaty–Niassar M, Short–Term and Medium–Term Gas Demand Load ...
  • Karimi H., Yousefi F., Rahimi M.R., Correlation of Viscosity in ...
  • Timung S., Mandal T.K., Prediction of Flow Pattern of Gas–Liquid ...
  • Specht D. F., Probabilistic Neural Networks, Neural Networks, ۳: ۱۰۹–۱۱۸ ...
  • Sayyad H., Manshad A.K., Rostami H., Application of Hybrid Neural ...
  • Bulsari A.B., "Neural Networks for Chemical Engineers", Amsterdam, Elsevier, (۱۹۹۶) ...
  • Azizi S., Ahmadloo E., Awad M.M., Prediction of Void Fraction ...
  • Terrence L.F., "Feedforward Neural Network Methodology", New York, Springer, (۱۹۹۹) ...
  • نمایش کامل مراجع