Determination of Original Gas Condensate Composition in The Case of Gas Coning
سال انتشار: 1392
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 51
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJCCE-32-4_012
تاریخ نمایه سازی: 17 خرداد 1404
چکیده مقاله:
Obtaining samples that represent original fluid of reservoirs optimizes reservoirs management. The optimized management increases recovery. Also, selecting and performing proper Improved Oil Recovery (IOR) or Enhance Oil Recovery (EOR) programs depend on collecting representative samples. Achieving accurate compositions of original in-situ fluid prevents overdesigning surface facilities. Representative samples cannot be collected from wells which are perforated at the gas / oil contact and are producing non-equilibrium gas. In some cases, samples must be or are collected, when gas coning occurs. There is no standard method for determining accurate original compositions in this situation. We want to discover a method that can estimate original in-situ compositions when gas coning is happened for the first time. Real fluid properties of Iranian oil reservoirs are imported to a synthetic reservoir model that is constructed by a compositional simulator for this purpose. Sampling is performed in the model and methods of determining original in-situ fluid compositions are modeled by detailed Equation Of State (EOS) characterization in the new scheme. In the result an accurate method is found. In this new approach gas coning is not a limitation in sampling even it is a benefit.
کلیدواژه ها:
نویسندگان
Mohammad Hadi Parhamvand
Department of Petroleum Engineering, Science and Research Branch, Islamic Azad University, Tehran, I.R. IRAN
Shahab Gerami
IOR Research Institute, National Iranian Oil Company (NIOC), I.R. IRAN
Mohammad Ali Emadi
Research & Technology Directorate, National Iranian Oil Company (NIOC), I.R. IRAN
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :