Modeling of Removal of Chromium (VI) from Aqueous Solutions Using Artificial Neural Network
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 24
نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJCCE-39-1_014
تاریخ نمایه سازی: 17 خرداد 1404
چکیده مقاله:
There is a need for knowledge, experience, laboratory, materials, and time to conduct chemical experiments. The results depend on the process and are also quite costly. For economic and rapid results, chemical processes can be modeled by utilizing data obtained in the past. In this paper, an artificial neural network model is proposed for predicting the removal efficiency of Cr (VI) from aqueous solutions with Amberlite IRA-۹۶ resin, as being independent of chemical processes. Multiple linear regression, linear and quadratic particle swarm optimization are also used to compare prediction success. A total of ۳۴ experimental data were used for training and validation of the model. pH, amount of resin, contact time, and concentration were used as input data. The removal efficiency is considered as output data for each model. The statistical methods of root-mean-square error, mean absolute percentage error, variance absolute relative error and the coefficient of determination were used to evaluate the performance of the developed models. The system has been analyzed using a feature selection method to assess the influence of input parameters on the sorption efficiency. The most significant factor was found in pH. The obtained results show that the proposed ANN model is more reliable than the other models for estimating removal efficiency.
کلیدواژه ها:
نویسندگان
Abdullah Erdal Tümer
Department of Computer Engineering, Necmettin Erbakan University, Konya, TURKEY
Serpil Edebali
Department of Chemical Engineering, Selcuk University, Konya, TURKEY
Şaban Gülcü
Department of Computer Engineering, Necmettin Erbakan University, Konya, TURKEY
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :