Modeling of Removal of Chromium (VI) from Aqueous Solutions Using Artificial Neural Network

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 24

نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJCCE-39-1_014

تاریخ نمایه سازی: 17 خرداد 1404

چکیده مقاله:

There is a need for knowledge, experience, laboratory, materials, and time to conduct chemical experiments. The results depend on the process and are also quite costly. For economic and rapid results, chemical processes can be modeled by utilizing data obtained in the past. In this paper, an artificial neural network model is proposed for predicting the removal efficiency of Cr (VI) from aqueous solutions with Amberlite IRA-۹۶ resin, as being independent of chemical processes. Multiple linear regression, linear and quadratic particle swarm optimization are also used to compare prediction success. A total of ۳۴ experimental data were used for training and validation of the model. pH, amount of resin, contact time, and concentration were used as input data. The removal efficiency is considered as output data for each model. The statistical methods of root-mean-square error, mean absolute percentage error, variance absolute relative error and the coefficient of determination were used to evaluate the performance of the developed models. The system has been analyzed using a feature selection method to assess the influence of input parameters on the sorption efficiency. The most significant factor was found in pH. The obtained results show that the proposed ANN model is more reliable than the other models for estimating removal efficiency.

نویسندگان

Abdullah Erdal Tümer

Department of Computer Engineering, Necmettin Erbakan University, Konya, TURKEY

Serpil Edebali

Department of Chemical Engineering, Selcuk University, Konya, TURKEY

Şaban Gülcü

Department of Computer Engineering, Necmettin Erbakan University, Konya, TURKEY

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Kişi Ö., River Flow Modeling Using Artificial Neural Networks, Journal ...
  • Tokar A., Markus M., Precipitation-Runoff Modeling Using Artificial Neural Networks ...
  • Rajurkar M., Kothyari U., Chaube U., Modeling of the Daily ...
  • Movagharnejad K., Nikzad M., Modeling of Tomato Drying Using Artificial ...
  • Dawson C., Wilby R., Hydrological Modelling Using Artificial Neural Networks, ...
  • Esfe M.H., Saedodin S., Bahiraei M., Toghraie D., Mahian O., ...
  • Esfe M.H., Wongwises S., Naderi A., Asadi A., Safaei M.R., ...
  • Witek-Krowiak A., Chojnacka K., Podstawczyk D., Dawiec A., Pokomeda K., ...
  • Asfaram A., Ghaedi M., Azqhandi M.A., Goudarzi A., Dastkhoon M., ...
  • Williams D., Modeling Business Failure among SMEs: An Artificial Neural ...
  • Ghaedi M., Ghaedi A., Ansari A., Mohammadi F., A Vafaei., ...
  • McCulloch W.S., Pitts W., A Logical Calculus of the Ideas ...
  • Yetilmezsoy K., Demirel S., Artificial Neural Network (ANN) Approach for ...
  • Fanaie V.R., Karrabi M., Amin M.M., Shahnavaz B., Fatehizadeh A., ...
  • Babaei A.A., Khataee A., Ahmadpour E., Sheydaei M., Kakavandi B., ...
  • Alguacil F.J., Coedo A.G., Dorado T., Padilla I., Recovery of ...
  • Wu Y., Ma X., Feng M., Liu M., Behavior of ...
  • Lin S., Kiang C., Chromic Acid Recovery from Waste Acid ...
  • Kocaoba S., Akcin G., Removal of Chromium (III) and Cadmium ...
  • Bai R.S., Abraham T.E., Studies on Chromium (VI) Adsorption–Desorption Using ...
  • Korngold E., Belayev N., Aronov L., Removal of Chromates from ...
  • Khezami L., Capart R., Removal of Chromium (VI) from Aqueous ...
  • Gupta S., Babu B., Removal of Toxic Metal Cr (VI) ...
  • Aksu Z., Gönen F., Demircan Z., Biosorption of Chromium (VI) ...
  • Edebali S., Pehlivan E., Evaluation of Amberlite IRA۹۶ and Dowex ...
  • Abdul-Wahab S.A., Bakheit C.S., Al-Alawi S.M., Principal Component and Multiple ...
  • S Al-Alawi.M., S. Abdul-Wahab A., Bakheit C.S., Combining Principal Component ...
  • Uyak V., Ozdemir K., Toroz I., Multiple Linear Regression Modeling ...
  • Özbay B., Keskin G.A., Doğruparmak Ş.Ç., Ayberk S., Multivariate Methods ...
  • Kennedy J., Eberhart R., Particle Swarm Optimization, in: IEEE International ...
  • Shabani M.O., A Mazahery., Searching for a Novel Optimization Strategy ...
  • Gordan B., Armaghani D.J., Hajihassani M., Monjezi M., Prediction of ...
  • Mutluer M., Bilgin O., Design Optimization of PMSM by Particle ...
  • Van Den Bergh F., An Analysis of Particle Swarm Optimizers, ...
  • Shi Y., Eberhart R., A Modified Particle Swarm Optimizer, in: ...
  • Xin, J., Chen, G., Hai, Y., A Particle Swarm Optimizer ...
  • Rezaee Jordehi, A., Jasni, J., Parameter Selection in Particle swarm ...
  • Chen S., Montgomery J., Bolufé-Röhler A., Measuring the Curse of ...
  • Fan M., Li, T., Hu J., Cao R., Wei X., ...
  • Singh T.N., Singh V.K., Sinha S., Prediction of Cadmium Removal ...
  • Arora J.K., Srivastava S., Neural Network Modeling and Simulation of ...
  • Yurtsever,U., Yurtsever M., Şengil İ.A., Kıratlı Yılmazçoban N., Fast Artificial ...
  • Kardam A., Raj, K.R., Arora J.K., Srivastava S., Simulation and ...
  • Sarala Thambavani D., Kavitha B., Prediction and Simulation of Chromium ...
  • Kardam A., Raj K.R., Arora J.K., Srivastava, M.M., Srivastava S., ...
  • نمایش کامل مراجع