A Neural Networks Model for Accurate Prediction of the Flash Point of Chemical Compounds

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 62

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJCCE-39-4_025

تاریخ نمایه سازی: 17 خرداد 1404

چکیده مقاله:

Flashpoint is one of the most important flammability characteristics of chemical compounds. In the present study, we developed a neural network model for accurate prediction of the flashpoint of chemical compounds, using the number of hydrogen and carbon atoms, critical temperature, normal boiling point, acentric factor, and enthalpy of formation as model inputs. Using a robust strategy to efficiently assign neural network parameters and evaluate the authentic performance of the neural networks, we could achieve an accurate model that yielded average absolute relative errors of ۰. ۹۷, ۰. ۹۶, ۰.۹۹ and ۱.۰% and correlation coefficients of ۰.۹۹۸۴, ۰.۹۹۸۵, ۰.۹۹۸۱ and ۰.۹۹۷۹ for the overall, training, validation and test sets, respectively.  These results are among the most accurate ever reported ones, to date.

نویسندگان

Hamid Reza Mirshahvalad

Department of Mechanical Engineering, West Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN

Ramin Ghasemiasl

Department of Mechanical Engineering, West Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN

Nahid Raufi

Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN

Mehrdad Malekzadeh Dirin

Department of Mechanical Engineering, West Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Prediction of the Liquid Vapor Pressure Using the Artificial Neural Network-Group Contribution Method [مقاله ژورنالی]
  • Mirshahvalad, H., et al., A Neural Network QSPR Model for ...
  • Alibakhshi A., Mirshahvalad H., Alibakhshi S., A Modified Group Contribution ...
  • Alibakhshi, A., Mirshahvalad H., Alibakhshi S., Investigating the Mechanism of ...
  • Degroote E., Control Parameters of Flame Spreading in a Fuel ...
  • Tashtoush G., Saito K., Cremers C., Gritzo L., Study of ...
  • Hshieh T.T., Hshieh F.-Y., Closed-Cup Flash Points and Flammability Properties ...
  • Nyquist Plots Prediction Using Neural Networks in Corrosion Inhibition of Steel by Schiff Base [مقاله ژورنالی]
  • Modeling Through Artificial Neural Networks of the Phenolic Compounds and Antioxidant Activity of Blueberries [مقاله ژورنالی]
  • Daryasafar A., Shahbazi K., Prediction Of Dynamic Viscosity of N-Alkanes ...
  • Pan B., Zhu Y., Wang C., Su S., A Process ...
  • Fernanda M. de Oliveira, Luciene S. de Carvalho, Leonardo S. ...
  • Alqaheem S.S., Riazi M.-R., Flash Points of Hydrocarbons and Petroleum ...
  • Albahri TA. MNLR and ANN Structural Group Contribution Methods For ...
  • Lazzús J.A., Prediction of Flash Point Temperature of Organic Compounds ...
  • Pan Y., Jiang J., Wang Z., Prediction of the Flash ...
  • Alibakhshi A., Mirshahvalad H., Alibakhshi S., Prediction of Flash Points ...
  • Carroll F.A., Lin C.-Y., Quina F.H., Improved Prediction of Hydrocarbon ...
  • Serat F.Z., Benkouider A.M., Yahiaoui A., Bagui F., Nonlinear Group ...
  • Cardoso S., Gomes J., Borges L., Hollauer E., Predictive QSPR ...
  • Diego SaldanaMiranda, Laurie Starck, Pascal Mougin, Bernard Rousseau, Ludivine Pidol, ...
  • Katritzky A.R., Stoyanova-Slavova I.B., Dobchev D.A., Karelson M., QSPR Modeling ...
  • Pan Y., Jiang J., Wang Z., Quantitative Structure-Property Relationship Studies ...
  • Tetteh J., Suzuki T., Metcalfe E., Howells S., Quantitative Structure-Property ...
  • Alibakhshi A., Enthalpy of Vaporization, Its Temperature Dependence and Correlation ...
  • Majhi A., Kukreti V., Sharma D., Sharma S., Sharma Y., ...
  • Jones J.C., On The Flash Point of Benzoic Acid. Journal ...
  • Jones J., Reid Vapour Pressure as a Route to Calculating ...
  • Patil G., Estimation of Flash Point, Fire and Materials, ۱۲: ...
  • Hshieh F-Y. Note: Correlation of Closed-Cup Flash Points with Normal ...
  • Riazi M., Daubert T., Predicting Flash and Pour Points, Hydrocarbon ...
  • Catoire L., Naudet V., A Unique Equation to Estimate Flash ...
  • Gharagheizi F., Ilani-Kashkouli P., Farahani N., Mohammadi A.H., Gene Expression ...
  • Alibakshi A. Strategies to Develop Robust Neural Network Models: Prediction ...
  • Demenay A., Glorian J., Paricaud P., Catoire L., Predictions of ...
  • Wilding W.V., Rowley R.L., Oscarson J.L., DIPPR® Project ۸۰۱ Evaluated ...
  • Rowley J.R., Rowley R.L., Wilding W.V., Prediction of Pure‐Component Flash ...
  • Mathieu D. Inductive Modeling of Physico-Chemical Properties: Flash Point of ...
  • Keshavarz M.H., Ghanbarzadeh M., Simple Method for Reliable Predicting Flash ...
  • Mathieu D., Alaime T., Insight into the Contribution of Individual ...
  • Rowley J., Rowley R., Wilding W., Estimation of the Flash ...
  • Hukkerikar A.S., Kalakul S., Sarup B., Young D.M., Sin Gr., ...
  • Mathieu D., Flash Points of Organosilicon Compounds: How Data for ...
  • Keshavarz M.H., Jafari M., Kamalvand M., Karami A., Keshavarz Z., ...
  • Khajeh A., Modarress H., QSPR Prediction of Flash Point of ...
  • Chen C.-C., Liaw H.-J., Tsai Y.-J., Prediction of Flash Point ...
  • Katritzky A.R., Petrukhin R., Jain R., Karelson M., QSPR Analysis ...
  • A Solution Model for Predicting Asphaltene Precipitation [مقاله ژورنالی]
  • Gopinath S., Devan P.K., Optimization and Prediction of Reaction Parameters ...
  • نمایش کامل مراجع