Computational Fluid Dynamics in ۳D-Printed Scaffolds with Different Strand-Orientation in Perfusion Bioreactors

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 53

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJCCE-39-5_026

تاریخ نمایه سازی: 17 خرداد 1404

چکیده مقاله:

Bone tissue engineering strategies use fluid flow dynamics inside ۳D-scaffolds in perfusion, bioreactors mechanically stimulate cells in these scaffolds. Fluid flow dynamics depends on the bioreactor’s inlet flow rate and ۳D-scaffold architecture. We aimed to employ a computational evaluation to assess fluid dynamics in ۳D-printed scaffolds with different angular orientations between strands in each layer inside a perfusion bioreactor at different inlet flow rates. ۳D-printed cubic scaffolds (۰.۶×۰.۶×۰.۶ cm; total volume ۲۱۶×۱۰-۳ cm۳) containing strands (diameter ۱۰۰ µm) with regular internal structure and different angular orientation (۳۰°, ۴۵°, ۶۰°, and ۹۰° between strands in each layer) were used for modeling. The finite element method showed that the perfusion bioreactor’s inlet flow rate (۰.۰۲, ۰.۱, ۰.۵ mL/min) was linearly related to average fluid velocity, average fluid shear stress, and average wall shear stress inside ۳D-printed scaffolds with different angular orientation (۳۰°, ۴۵°, ۶۰°, ۹۰°) between strands in each layer. At all inlet flow rates, strands at ۳۰° angular orientation increased average fluid velocity (۱.۲-۱.۵-fold), average fluid shear stress (۶-۱۰-fold), and average wall shear stress (۱.۴-۲-fold) compared to strands at ۴۵°, ۶۰°, and ۹۰° angular orientation providing similar results. In conclusion, significant local changes in fluid dynamics inside ۳D-printed scaffolds result from varying the degree of angular orientation between strands in each layer, and the perfusion bioreactor’s inlet flow rate. By decreasing the angular orientation between strands in each layer and increasing the inlet flow rate of a perfusion bioreactor, the magnitude and distribution of fluid velocity, fluid shear stress, and wall shear stress inside the scaffold increased. The average fluid velocity, average fluid shear stress, and average wall shear stress inside the scaffold within the bioreactor increased linearly with the inlet flow rate. This might have important implications for bone tissue engineering strategies using cells, scaffolds, and bioreactors.

نویسندگان

Ali Reza Saatchi

Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, I.R. IRAN

Hadi Seddiqi

Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, I.R. IRAN

Ghassem Amoabediny

Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, I.R. IRAN

Marco N. Helder

Department Oral and Maxillofacial Surgery, VU University Medical Center/Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam Movement Sciences, Amsterdam, THE NETHERLANDS

Behrouz Zandieh-Doulabi

Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA)-the University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, THE NETHERLANDS

Jenneke Klein-Nulend

Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA)-the University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, THE NETHERLANDS

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Volkmer E., Drosse I., Otto S., Stangelmayer A., Stengele M., ...
  • Bjerre L., Bünger C.E., Kassem M., Mygind T., Flow Perfusion ...
  • Li D., Tang T., Lu J., Dai K., Effects of ...
  • Cai D.X., Quan Y., He P.J., Tan H.B., Xu Y.Q., ...
  • Kim J., Ma T., Perfusion Regulation of HMSC Microenvironment and ...
  • Liu C., Abedian R., Meister R., Haasper C., Hurschler C., ...
  • Cartmell S.H., Porter B.D., García A.J., Guldberg, R.E., Effects of ...
  • Sittichockechaiwut A., Scutt A.M., Ryan A.J., Bonewald, L.F., Reilly G.C., ...
  • Bacabac R.G., Smit T.H., Mullender M.G., Dijcks S.J., Van Loon ...
  • Klein-Nulend J., Van der Plas A., Semeins C.M., Ajubi N.E., ...
  • Rubin J., Rubin C., Jacobs C.R., Molecular Pathways Mediating Mechanical ...
  • Weinbaum S., Cowin S.C., Zeng Y., A Model for the ...
  • Song M.J., Dean D., Tate M.L.K., Mechanical Modulation of Nascent ...
  • Yue D., Zhang M., Lu J., Zhou J., Bai Y., ...
  • Papantoniou I., Chai Y.C., Luyten F.P., Schrooten J., Process Quality ...
  • Elashry M.I., Gegnaw S.T., Klymiuk M.C., Wenisch S., Arnhold S., ...
  • Li Y., Fang X., Jiang T., Minimally Traumatic Alveolar Ridge ...
  • Zhu X., Zhong T., Huang R., Wan A., Preparation of ...
  • Liu S., He Z., Xu G., Xiao X., Fabrication of ...
  • Haugh M.G., Murphy C.M., O'Brien F.J., Novel Freeze-drying Methods to ...
  • Hollister S.J., Porous Scaffold Design for Tissue Engineering, Nat. Mater., ...
  • Stevens B., Yang Y., Mohandas A., Stucker B., Nguyen K.T., ...
  • Wu C., Luo Y., Cuniberti G., Xiao Y., Gelinsky M., ...
  • Pfister A., Landers R., Laib A., Hübner U., Schmelzeisen R., ...
  • Bartnikowski M., Klein T.J., Melchels F.P., Woodruff M.A., Effects of ...
  • Hossain M.S., Boergstrom D.J., Chen X.B., Prediction of Cell Growth ...
  • Lesman A., Blinder Y., Levenberg S., Modeling of Flow-induced Shear ...
  • Hutmacher D.W., Singh H., Computational Fluid Dynamics for Improved Bioreactor ...
  • Boschetti F., Raimondi M.T., Migliavacca F., Dubini G., Prediction of ...
  • Maes F., Claessens T., Moesen M., Van Oosterwyck H., Van ...
  • Vossenberg P., Higuera G.A., Van Straten G., Van Blitterswijk C.A., ...
  • Xue X., Patel M.K., Kersaudy-Kerhoas M., Desmulliez M.P., Bailey C., ...
  • McCoy R.J., Jungreuthmayer C., O'Brien F.J., Influence of Flow Rate ...
  • Campos Marin A., Lacroix D., The Inter-sample Structural Variability of ...
  • Bakker A.D., Gakes T., Hogervorst J.M., De Wit G.M., Klein‐Nulend ...
  • Knippenberg M., Helder M.N., Zandieh Doulabi B., Semeins C.M., Wuisman ...
  • Wittkowske C., Reilly G.C., Lacroix D., Perrault C.M., In Vitro ...
  • Olivares A.L., Marsal È., Planell J.A., Lacroix D., Finite Element ...
  • Prendergast P.J., Huiskes R., Soballe K., Biophysical Stimuli on Cells ...
  • Park J., Li Y., Berthiaume F., Toner M., Yarmush M.L., ...
  • Tilles A.W., Baskaran H., Roy P., Yarmush M.L., Toner M., ...
  • Vinci B., Duret C., Klieber S., Gerbal‐Chaloin S., Sa‐Cunha A., ...
  • Sandino C., Planell J.A., Lacroix D., A Finite Element Study ...
  • Yan X., Chen X., Bergstrom D.J., Modeling of the Flow ...
  • Hollnagel D.I., Summers P.E., Poulikakos D., Kollias S.S., Comparative Velocity ...
  • Yap C.H., Saikrishnan N., Yoganathan A.P., Experimental Measurement of Dynamic ...
  • Roloff C., Berg P., Redel T., Janiga G., Thévenin D., ...
  • نمایش کامل مراجع