Applications of Multi-Layer Perceptron Artificial Neural Networks for Polymerization of Expandable Polystyrene by Multi-Stage Dosing Initiator
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 68
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJCCE-41-3_014
تاریخ نمایه سازی: 17 خرداد 1404
چکیده مقاله:
In this research, Expandable Polystyrene (EPS) polymerization with conventional and Multi-stage Initiator Dosing (MID) methods is simulated by Multi-Layer Perceptron (MLP) Artificial Neural Networks (ANN). In order to optimize MID method, an efficient algorithm was employed for optimal training of the neural network. An algorithm was used to train the MLP networks more rapidly and efficiently than the conventional procedures. The main objective of MID method implementation is to reduce the time of the polymerization and because of that, by having different tests (first stage polymerization at ۴, ۳.۵, ۳, ۲.۵ hours and different amounts of used initiator at common state ۱۰۰, ۸۰, ۷۵, ۷۰ percent and the different number of dosings ۱۲, ۱۰, ۸, ۶) it was found that in an optimal state, the first stage polymerization time can be ۳ hours and amount of the used initiator can be reduced to ۷۰% in comparison to common state and number of dosings can be ۶ times. The results of the simulation showed that the time of the first step of the polymerization has been reduced, the amount of the used initiator has been optimized and the count of the dosing times reduced to half, and therefore the time of the EPS polymerization is reduced to ۶۰% of the conventional method.
کلیدواژه ها:
نویسندگان
Amir Mehralizadeh
Department of Chemical Engineering, Ahar Branch, Islamic Azad University, Ahar, I.R. IRAN
Fahimeh Derakhshanfard
Department of Chemical Engineering, Ahar Branch, Islamic Azad University, Ahar, I.R. IRAN
Zohreh Ghazi Tabatabei
Department of Chemistry, Ahar Branch, Islamic Azad University, Ahar, I.R. IRAN
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :