Mixture of Xylose and Glucose Affects Xylitol Production by Pichia guilliermondii: Model Prediction Using Artificial Neural Network
سال انتشار: 1391
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 28
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJCCE-31-1_016
تاریخ نمایه سازی: 17 خرداد 1404
چکیده مقاله:
Production of several yeast products occur in presence of mixtures of monosaccharides. To study effect of xylose and glucose mixtures with system aeration and nitrogen source as the other two operative variables on xylitol production by Pichia guilliermondii, the present work was defined. Artificial Neural Network (ANN) strategy was used to athematically show interplay between these three controllable factors and the xylitol productivity response. In the first stage, model fitting was performed using Response Surface Methodology (RSM) and the appropriate fraction of this design then was applied for the ANN training step (Levenberg Marquardt ‘LM’ algorithm). The best ANN model configuration with the three test input variables composed of six neurons in the hidden layer and tangent sigmoid (TANSIG) and linear transfer function (PURELIN) were used as the activation functions for the data processing from inputs to the hidden layer and from the constructed neurons to the output nodes. The network performance was evaluated by Mean Squared Error (MSE) and the regression coefficient of determination (R۲). These values respectively, for the RSM model fitting were ۲.۳۲۷× ۱۰-۴ and ۰.۹۸۱۷, and for the ANN training data were ۲.۲۹ × ۱۰-۸ and ۰.۹۹۹۹. While MSE and R۲ values for the other two steps of ANN were ۴.۵۶ × ۱۰-۳ and ۰.۹۷۴۱ (validating step) and۱.۵۲× ۱۰-۳ and ۰.۹۳۲۵ (testing step), respectively. Positive synergism of ANN with RSM was confirmed.
کلیدواژه ها:
Artificial neural network ، Glucose and xylose mixture ، Pichia guilliermondii ، Response surface methodology ، Xylitol production
نویسندگان
Azadeh Magharei
Faculty of Chemical Engineering, Amirkabir University of Technology, Tehran, I.R. IRAN
Farzaneh Vahabzadeh
Faculty of Chemical Engineering, Amirkabir University of Technology, Tehran, I.R. IRAN
Morteza Sohrabi
Faculty of Chemical Engineering, Amirkabir University of Technology, Tehran, I.R. IRAN
Yousef Rahimi Kashkouli
Faculty of Chemical Engineering, Amirkabir University of Technology, Tehran, I.R. IRAN
Mohammad Maleki
Faculty of Chemical Engineering, Amirkabir University of Technology, Tehran, I.R. IRAN
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :