Improving the results of the fractal model of geochemical Mineralization Probability Index Using the Gray Wolf Algorithm on the Stream Sediments Data of Sarduiyeh-Baft Area
محل انتشار: مجله معدن و محیط زیست، دوره: 16، شماره: 4
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 52
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMAE-16-4_002
تاریخ نمایه سازی: 17 خرداد 1404
چکیده مقاله:
Discrimination of geochemical anomalies from background is a challenge in that elemental dispersion patterns are affected by a variety of geological factors, which vary from one to another area. While statistical and fractal methods are commonly employed for anomaly detection, they struggle with selecting optimal thresholds. This study proposes the Grey Wolf Optimizer (GWO) algorithm as a novel approach for identifying the optimal boundary between anomalies and background. Stream sediment geochemical data from a copper-mineralized area of the Sarduiyeh-Baft sheets in southeast Iran were utilized for analysis. The Geochemical Mineralization Probability Index (GMPI) was first calculated for Cu-Au, Mo-As, Pb-Zn, and porphyry distributions. Subsequently, fractal methods were used to identify anomalous populations within each GMPI. The GWO algorithm was then applied to these distributions to determine the optimal thresholds. Risk analysis, calculated as the ratio of covered copper occurrences to the covered area, revealed superior reliability for the GWO-derived limit compared to those obtained using fractal methods. For porphyry GMPI values, while the fractal reliability indices are ۰.۱۲۷, ۰.۴۴, and ۰.۵, the GWO limit achieved a value of ۰.۶۶. Risk analysis for Cu-Au distribution also caused more desired result for GWO limit rather that fractal ones. This demonstrates the enhanced performance and superior reliability of the GWO algorithm for optimizing anomaly detection thresholds in GMPI data.
کلیدواژه ها:
نویسندگان
Kamran Mostafaei
Department of Mining, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
Mohammad Kianpour
School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia (USM)
Mahyar Yousefi
Faculty of Engineering, Malayer University, Malayer, Iran
Meisam Saleki
School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia (USM)
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :