On the nonlinear programming problems subject to a system of generalized bipolar fuzzy relational equalities defined with continuous t-norms

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 15

فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJFS-22-3_002

تاریخ نمایه سازی: 17 خرداد 1404

چکیده مقاله:

As a starting point, this paper develops the system of bipolar fuzzy relational equations (FRE) to the most general case, where bipolar FREs are defined by an arbitrary continuous t-norm. Due to the fact that fuzzy relational equations are special cases of bipolar FREs, the proposed system can also be viewed as a generalization of traditional FREs, in which the fuzzy composition can be defined by a continuous t-norm. In order to determine the feasibility of the proposed system, some necessary and sufficient conditions are presented for studying continuous bipolar FREs. This is followed by a complete analysis of the set of feasible solutions to the problem. Contrary to FREs and bipolar FREs defined by continuous Archimedean t-norms, the feasible solutions set of generalized bipolar FREs consists of a finite number of compact sets that are not necessarily connected. Further, five techniques have been outlined in an attempt to simplify the current problem, and then an algorithm has been presented to find the feasible region of the problem. Next, we present a class of optimization models subject to continuous bipolar FRE constraints, in which the objective function incorporates a wide range of (non)linear functions, such as maximum functions, geometric mean functions, log-sum-exp functions, maximum eigenvalues of symmetric matrices, support functions for sets, etc. Considering that the problem has a finite number of local optimal solutions, the global optimal solution can always be obtained by choosing the point with the minimum objective value among these local optimal solutions. Lastly, as a means to illustrate the definitions, theorems, and algorithms presented in the paper, a step-by-step example is presented in several sections, in which the constraints are a system of bipolar FREs defined by the Dubois-Prade t-norm, which is a continuous non-Archimedean t-norm.

کلیدواژه ها:

نویسندگان

Amin Ghodousian

Faculty of Engineering Science, College of Engineering, University of Tehran, P.O.Box ۱۱۳۶۵-۴۵۶۳, Tehran, Iran.

Mohammad Chopannavaz

Department of Engineering Science, College of Engineering, University of Tehran, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. S. Bazaraa, H. D. Sherali, C. M. Shetty, Nonlinear ...
  • ۲۰۱۷.۸۰۱۵۶۹۱[۷] S. Dempe, A. Ruziyeva, On the calculation of a ...
  • Y. R. Fan, G. H. Huang, A. L. Yang, Generalized ...
  • https://doi.org/۱۰.۱۰۱۶/j.asoc.۲۰۱۸.۰۴.۰۲۹[۱۷] A. Ghodousian. E. Khorram, Fuzzy linear optimization in the ...
  • Linear optimization problem subjected to fuzzy relational equations and fuzzy constraints [مقاله ژورنالی]
  • ۱۰۱۶/j.ins.۲۰۲۳.۱۱۹۶۹۶[۲۲] F. F. Guo, L. P. Pang, D. Meng, Z. ...
  • org/۱۰.۱۴۷۳۶/kyb-۲۰۱۶-۴-۰۵۱۴[۲۹] P. Li, Y. Liu, Linear optimization with bipolar fuzzy ...
  • org/۱۰.۱۲۰۱/۹۷۸۱۳۱۵۲۱۶۷۳۷[۳۹] X. B. Qu, X. P. Wang, Minimization of linear ...
  • ۲۰۰۸.۰۴.۰۰۴[۴۰] X. B. Qu, X. P. Wang, M. H. Lei, ...
  • ۱۰۱۶/j.fss.۲۰۱۳.۰۳.۰۱۷[۴۱] E. Sanchez, Resolution of eigen fuzzy sets equations, Fuzzy ...
  • org/۱۰.۱۰۱۶/۰۱۶۵-۰۱۱۴(۷۸)۹۰۰۳۳-۷[۴۲] E. Sanchez, Solutions in composite fuzzy relation equations: Application ...
  • B. S. Shieh, Infinite fuzzy relation equations with continuous t-norms, ...
  • F. Sun, X. P. Wang, X. B. Qu, Minimal join ...
  • Y. K. Wu, Optimization of fuzzy relational equations with max-av ...
  • Y. K. Wu, S. M. Guu, J. Y. C. Liu, ...
  • X. P. Yang, Resolution of bipolar fuzzy relation equations with ...
  • نمایش کامل مراجع