Composition and Relative Volatility Estimation in Ethanol-Water Distillation Process through Quadratic Program Based Constrained Kalman Estimation Paradigm
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 4
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJCCE-42-1_023
تاریخ نمایه سازی: 17 خرداد 1404
چکیده مقاله:
Kalman filter is a classic iterative estimation technique widely used to estimate states and parameters of linear dynamic systems with white Gaussian measurement and process noises. However, if the measurement noises are predominant, resulting in a poor signal-to-noise ratio, the estimator fails to provide allowable error covariance and optimal state estimation. In such circumstances, to enhance the estimation accuracy, measurement constraints need to be incorporated into the estimation routine. Through this work, a Quadratic Program-based Constrained Kalman Estimation (QP-CKE) estimation sequence is proposed and developed to handle the additive measurement noise constraints. This is implemented by incorporating a deconvoluted quadratic program with a modified Kalman estimation paradigm to handle the constraint cost function. Composition estimation in a laboratory binary distillation process for ethanol-water mixture separation under steady-state operating conditions is used as a case study. Noise augmented Two Input Two Output (TITO) linearized dynamic model of the process is established by inferring Gaussian distributed tray temperature measurements and mixture vapor-liquid equilibrium data. The performance of this new estimator is tested for top and bottom composition estimation for step input excitation for reflux rate and reboiler power inputs under feed flow disturbances and the results are compared with that of conventional Kalman and Q adaptive Kalman estimators. The performance of the proposed estimator proves to be competent with reasonable computational speed and improved estimation accuracy. Also, relative volatility and vapor-liquid equilibrium trends are derived from estimated tray composition data, and results are found in good relevance with that of the experimental data.
کلیدواژه ها:
Distillation process ، Gaussian noise ، Quadratic Programmed Constrained Kalman Estimator (QP-CKE) ، Two Input Two Output (TITO) system ، Adaptive Kalman Estimation (AKE)
نویسندگان
Sagi Bharati
Department of Electronics and Instrumentation Engineering, VNR VJIET, Hyderabad, INDIA
Thangavelu Thyagarajan
Department of Instrumentation Engineering, MIT, Anna University, Chennai, INDIA
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :