Estimation of Surface Tension of Aqueous Polymer Solutions Using Soft Computing Approaches

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 65

فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJCCE-42-5_022

تاریخ نمایه سازی: 17 خرداد 1404

چکیده مقاله:

The surface tension of aqueous polymer solutions is an important property that plays a vital role in mass and heat transfer. In this study, the surface tension of a polymer mixture is modeled using four algorithms (Adaptive Neuro-Fuzzy Inference System (ANFIS), Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), and  Adaptive group of Ink Drop Spread (AGIDS) ) which has been developed in the soft-computing domain. In this paper, four models for predicting the surface tension are applied and the results were compared with our published experimental data and it was found that the predictions of these models fit the experimental data very accurately. Also, a comparison has been done to evaluate the effectiveness of the relevant four algorithms in the current problem. The simulation results have shown that ANFIS and RBF model predictions are more accurate than the two others in the current problem.

نویسندگان

Iman Esmaili Paeen Afrakotia

Faculty of Technology and Engineering, University of Mazandaran, Babolsar, I.R. IRAN

Ali Akbar Amooey

Faculty of Technology and Engineering, University of Mazandaran, Babolsar, I.R. IRAN

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Hu R.Y.Z., Wang A.T.A., Hartnett J.P., Surface Tension Measurement of ...
  • Wu S., Interfacial and Surface Tensions of Polymers, Journal of ...
  • Szymczyk K, Zdziennicka A., Wettability, Adhesion, Adsorption and Interface Tension ...
  • Sharma S., Kamil M., Studies on the Interaction Between Polymer ...
  • Nath S., Surface Tension of Nonideal Binary Liquid Mixtures as ...
  • Larsen B.L., Rasmussen P., Fredenslund A., A Modified UNIFAC Group-Contribution ...
  • Bongiorno V., Davis H.T., Modified Van Der Waals Theory of ...
  • Babuška R., Verbruggen H.B., An Overview of Fuzzy Modeling for ...
  • Roy D.G., Singh T.N., Regression and Soft-Computing Models to Estimate ...
  • Vaidyanathan S., Zhu Q., Azar A.T., Adaptive Control of a ...
  • Singh R., Umrao R.K., Ahmad M., Ansari M.K., Sharma L.K., ...
  • Liu Y., Zhang Y., Iterative local ANFIS-based Human Welder Intelligence ...
  • Wu Q., Wang, X., Shen Q., Research on Dynamic Modeling ...
  • Amooey A.A., Fazlollahnejad M., Study of Surface Tension of Binary ...
  • Vakili M., Yahyaei M., Kalhor K., Thermal Conductivity Modeling of ...
  • Jang J.S., ANFIS: Adaptive-Network-based Fuzzy Inference System, IEEE Transactions on ...
  • Hosoz,M., et al., ANFIS Modelling of the Performance and Emissions ...
  • Fu Y., Yang H., Ding J., Multiple Operating Mode ANFIS ...
  • Veluchamy B., Karthikeyan N., Krishnan B.R., Sundaram C.M., Surface Roughness ...
  • Raj A.S., Oliver D.H., Srinivas Y., Geoelectrical Data Processing Using ...
  • Broomhead D.S., Lowe D., Radial Basis Functions, Multi-Variable Functional Interpolation ...
  • Lazzaro D., Montefusco L.B., Radial Basis Functions for the Multivariate ...
  • Belloir F., Fache A., Billat A., April. A General Approach ...
  • Li Y., et al., Robust and Adaptive Back Stepping Control ...
  • Karayiannis N.B., Gradient Descent Learning of Radial Basis Neural Networks, ...
  • Wu J., Long J., Liu M., Evolving RBF Neural Networks ...
  • Ruck D.W., et al., The Multilayer Perceptron as an Approximation ...
  • Norgaard M., Ravn O., Poulsen N.K., Hansen L.K., “Neural Networks ...
  • Gardner M.W., Dorling S., Artificial Neural Networks (the Multilayer Perceptron) ...
  • Agirre-Basurko E., Ibarra-Berastegi G., Madariaga I., Regression and Multilayer Perceptron-Based ...
  • Radha Krishnan B., Vijayan V., Parameshwaran Pillai T., and Sathish ...
  • Hecht-Nielsen R., Theory of the Backpropagation Neural Network. In Neural ...
  • Shouraki S.B., Recursive Fuzzy Modeling Based on Fuzzy Interpolation, Journal ...
  • Murakami M., Honda N., A Study on the Modeling Ability ...
  • Firouzi M., Shouraki S.B., Afrakoti I.E.P., Pattern Analysis by Active ...
  • Sagha H., Afrakoti I.E.P., Bagherishouraki S., Actor-Critic-Based Ink Drop Spread ...
  • Afrakoti I.E.P., Shouraki S.B., Bayat F.M., Gholami M., Using a ...
  • Afrakoti I.E.P., Shouraki S.B., Haghighat B., An Optimal Hardware Implementation ...
  • Afrakoti I.E.P., Ghaffari A., Shouraki S.B., March. “Effective Partitioning of ...
  • Sagha H., Shouraki S.B., Beigy H., Khasteh H., Enayati E., ...
  • Hosseini S.A., Afrakoti I.E.P., Adaptive Group of Ink Drop Spread: ...
  • نمایش کامل مراجع