Design of Instrumentation Sensor Networks for Non-Linear Dynamic Processes Using Extended Kalman Filter

سال انتشار: 1387
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 5

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJCCE-27-3_002

تاریخ نمایه سازی: 17 خرداد 1404

چکیده مقاله:

This paper presents a methodology for design of instrumentation sensor networks in non-linear chemical plants. The method utilizes a robust extended Kalman filter approach to provide an efficient dynamic data reconciliation. A weighted objective function has been introduced to enable the designer to incorporate each individual process variable with its own operational importance. To enhance the evaluation accuracy of the weighted objective function, a true relative standard deviation measure has been employed in the presented formulation. A Genetic Algorithm (GA) has been used to solve the resulting constrained optimization problem due to cost-optimal and performance-optimal design objectives. The proposed method has been tested on a non-linear continuous-stirred tank reactor (CSTR) benchmark plant, illustrating its effective design capabilities.

نویسندگان

Karim Salahshoor

Department of Automation and Instrumentation, Petroleum University of Technology, Tehran, I.R. IRAN

Mohammad Reza Bayat

Instituto de sistemas e Robótica (ISR), Instituto Superior Técnico (IST), Technical University of Lisbon (UTL), Lisbon, PORTUGAL

Mohsen Mosallaei

Department of Automation and Instrumentation, Petroleum University of Technology, Tehran, I.R. IRAN

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Vaclavek, V. and Loucka, M., Selection of Measure-ments Necessary to ...
  • Ali, Y. and Narasimhan, S., Sensor Network Design for Maximizing ...
  • Ali, Y. and Narasimhan, S., Redundant Sensor Network for Linear ...
  • Sen, S., Narasimhan, S. and Deb, K., Sensor Network Design ...
  • Madron, F., “Process Plant Performance Measurement and Data Processing for ...
  • Bagajewicz, M.J., Design and Retrofit of Sensors Networks in Process ...
  • Bagajewicz, M.J., “Process Plant Instrumentation Design and Upgrade”, Technomic Publishing ...
  • Bagajewicz, M.J. and Cabrera, E.,A New MILP Formulation for Instrumentation ...
  • Chmielewski, D., Palmer, T. and Manousiouthakis, V.,On the Theory of ...
  • Carnero, M., Hernandez, J., Sanchez, M. and Bandoni, A., An ...
  • Gerkens, C. and Heyen, G., Sensor Network Design Using Genetic ...
  • Carnero, M., Hernandez, J., Sanchez, M. and Bandoni, A., On ...
  • Musulin, E., Benqlilou, C., Bagajewicz, M.J. and Puigjaner, L., Instrumentation ...
  • Welch, G. and Bishop, G., An Introduction to the Kalman ...
  • Maybeck, P.S., “Stochastic Models, Estimation and Control”, New York: Academic, ...
  • Genetic Algorithm Toolbox [on-line], Available from: http:// www.shef.ac.uk/ uni/ projects/ ...
  • Bhushan, M. and Rengaswamy, R.,Design of Sensor Location Based on ...
  • Bagajewicz, M.J. and Fuxman, A., Instrumentation Network Design and Upgrade ...
  • نمایش کامل مراجع