A Neuro-Fuzzy Model for a Dynamic Prediction of Milk Ultrafiltration Flux and Resistance

سال انتشار: 1386
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 66

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJCCE-26-2_007

تاریخ نمایه سازی: 16 خرداد 1404

چکیده مقاله:

A neuro-fuzzy modeling tool (ANFIS) has been used to dynamically model cross flow ultrafiltration of milk. It aims to predict permeate flux and total hydraulic resistance as a function of transmembrane pressure, pH, temperature, fat, molecular weight cut off, and processing time. Dynamic modeling of ultrafiltration performance of colloidal systems (such as milk) is very important for designing of a new process and better understanding of the present process. Such processes show complex non-linear behavior due to unknown interactions between compounds of a colloidal system. In this paper, ANFIS, Multilayer Perceptron (MLP) and FIS were applied to compare results. The ANFIS approximation gave some advantage over the other methods. The results reveal that there is an excellent agreement between the tested (not used in training) and modeled data, with a good degree of accuracy. Furthermore, the trained ANFIS are capable of accurately capture the non-linear dynamics of milk ultrafiltration even for a new condition that has not been used in the training process (tested data). In addition, ANFIS and Multilayer Perceptron (MLP) are compared and the Matlab software was adopted to implement the method.

نویسندگان

Nasser Saghatoleslami

Department of Chemical Engineering, University of Ferdowsi, P.O. Box ۹۱۷۷۹۴۸۹۴۴ Mashhad, I. R. IRAN

Mahmood Mousavi

Department of Chemical Engineering, University of Ferdowsi, P.O. Box ۹۱۷۷۹۴۸۹۴۴ Mashhad, I. R. IRAN

Javad Sargolzaei

Department of Chemical Engineering, University of Ferdowsi, P.O. Box ۹۱۷۷۹۴۸۹۴۴ Mashhad, I. R. IRAN

Mohammad Khoshnoodi

Department of Chemical Engineering, University of Sistan and Baluchestan, P.O. Box ۹۸۱۶۴ -۱۶۱ Zahedan, I. R. IRAN

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Zadeh, L.A., Fuzzy Sets, Information and Control, ۸, ۳۳۸(۱۹۶۵) ...
  • Takagi, T. and Sugeno, M., Structure Identification of Systems and ...
  • Lin, C.T. and Lee, C., Neural-Network-Based Fuzzy Logic Control and ...
  • Amano, A. and Arisuka, T., On the Use of Neural ...
  • Lin, Y. and Cunningham, G.A., A New Approach to Fuzzy-Neural ...
  • Wong, C. and Chen, C.C., A Hybrid Clustering and Gradient ...
  • Linkens, D.A. and Chen, M.Y., Input Selection and Partition Validation ...
  • Chen, M.Y. and Linkens, D.A., A Systematic Neuro-Fuzzy Modeling Framework ...
  • Kohonen, T., The Self-Organizing Map, Proc. IEEE, ۷۸ (۹), ۱۴۶۴ ...
  • Jyh-Shing, Jang, R., ANFIS: Adaptive-Network-Based Fuzzy Inference System, IEEE Trans. ...
  • Li-Xin Wang, Training of Fuzzy Logic Systems using Nearest Neighborhood ...
  • Adaptive Fuzzy Inference Neural Network, http:// www.elsevier.com/locate/patcog, (۲۰۰۵) ...
  • Iyatomi, H. and Hagiwara, M., Knowledge Extraction from Scenery Images ...
  • Iyatomi, H. and Hagiwara, M., Scenery Image Recognition and Interpretation ...
  • Chiu, S.L., Selecting Input Variables for Fuzzy Models, Journal Intelligent ...
  • Juang, C.F. and Lin, C.T., An On-Line Self-Constructing Neural Fuzzy ...
  • Jang, J.S.R. and Sun, C.T., Neuro-Fuzzy Modeling and Control, IEEE ...
  • Nauck, D., Klawonn, F. and Kruse, R., Foundation of Neuro-Fuzzy ...
  • Grandison, A.S., Youravong, W. and Lewis, M.J., Hydrodynamic Factors Affecting ...
  • نمایش کامل مراجع