Experimental Study of Pulsatile Electric Field Effect on a Single Drop Rupture Through the Response Surface Methodology: Critical Electric Field Estimation

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 4

فایل این مقاله در 24 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJCCE-43-12_027

تاریخ نمایه سازی: 16 خرداد 1404

چکیده مقاله:

Electro-coalescence has been an environmentally friendly technology for decades. However, electric field strength should not exceed a critical value (Ecrit) to inhibit droplets from disintegrating during coalescence. Response surface methodology (RSM) with a D-optimal design was utilized to develop a model to achieve the maximum Ecrit of a single drop. The p-values showed that all studied variables were statistically significant, including Waveform, frequency, drop diameter, and interfacial tension. The results showed that by increasing the drop diameter,  decreases at all frequencies in the presence and absence of surfactant. Frequency change revealed Ecrit increases with a moderate slope for all waveforms. Because the change in field periodicity at higher frequencies becomes more frequent, this observation was attributed to a lower degree of drop deformation due to shorter on-time intervals of pulsatile electric field and non-compliance of drop vibration with field frequency. Moreover, the critical electric field declined by decreasing the interfacial tension for all waveforms and the entire frequency range examined. Adding SDS surfactant diminishes the force of surface tension against electric force and the critical field is reduced accordingly. Following  the revelation of the interaction between diameter and frequency, elevated frequencies significantly impact larger droplets, and the sensitivity of Ecrit to the diameter decreases with frequency. This suggests higher frequencies as a valuable and fast controllable variable to compensate for the effect of droplet size distribution. Optimization suggested a minimum drop diameter and a maximum frequency that can be used as two essential limits for the robust electro-coalescer design. The maximum critical electric field was obtained for Pulse ۹۰ at a frequency of ۱۰۰۰ Hz for a drop diameter of ۲.۱۲ mm in the absence of the surfactant. These findings can be used to attain the appropriate ranges of variables to design a robust electro-coalescer.

نویسندگان

Zahra Shahmoradi

Separation Processes & Nanotechnology Lab. Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rezvanshahr, I.R. IRAN

Seyed Hamed Mousavi

Separation Processes & Nanotechnology Lab. Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rezvanshahr, I.R. IRAN

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Stewart M., Arnold K., Emulsions and Oil Treating Equipment: Selection, ...
  • Sjöblom J., Aske N., Auflem IH., Qvstein B., Our Current ...
  • Whitby C.P., Fornasiero D., Ralston J., Effect of Oil Soluble ...
  • Mousavichoubeh M., Shariaty-Niassar M., Ghadiri M., The Effect of Interfacial ...
  • Bavareh M., Mortazavi S., Binary Collision of Drops in Simple ...
  • Bayareh M., Dabiri S., Ardekani A.M., Interaction Between Two Drops ...
  • Bayareh M., Mortazavi S., Three-Dimensional Numerical Simulation of Drops Suspended ...
  • Chen X., Chen X., A Novel Electrophoretic Assisted Hydrophobic Microdevice ...
  • Han W., Chen X., Nano-Electrokinetic Ion Enrichment of Highly Viscous ...
  • Han W., Chen X., A Review: Applications of Ion Transport in ...
  • Mhatre S., Thaokar R., Electrocoalescence in Non-Uniform Electric Fields: An ...
  • Anand V., Juvekar V.A., Thaokar R.M., An Experimental Study on ...
  • Rodionova G., Keleşoğlu S., Sjöblom J., AC Field Induced Destabilization ...
  • Lesaint C., Glomm W.R., Lundgaard L. E., Dehydration efficiency of ...
  • Mohammadi M., Shah Hosseini S., Bayan M., Numerical Prediction of ...
  • Guo C., He Le., Coalescence Behaviour of Two Large Water ...
  • Mousavi S.H., Ghadiri M., Buckley M., Electro-Coalescence of Water Drops ...
  • He X., Wang SL., Yang Y.R., Wang X.D., Electro-Coalescence of ...
  • Huang X., He L., Xu K., Lu Y., Yang D., ...
  • Ou G., Li J., Jin Y., Chen M., Ma Y., ...
  • Huang X., He L., Luo X., Xu K., Lu Y., ...
  • Huang X., He L., Luo X., Xu K., Lu Y., ...
  • Wang B.B., Wang X.D., Wang T.H., Yan W.M., Electrocoalescence Behavior ...
  • Wang B.B., Wang X.D., Wang T.H., Lu T.H., Yan W.M., ...
  • Mousavichoubeh M., Ghadiri M., Shariaty-Niassar M., Electro-Coalescence of an Aqueous ...
  • Aryafar H., Kavehpour H.P., Electrocoalescence: Effects of DC Electric Fields ...
  • Taylor G.I., Disintegration of Water Drops in an Electric Field, ...
  • Ristenpart W., Brid J.C., Belmonte A., Dollar F., Non-Coalescence of ...
  • Bird J.C., Ristenpart W.D., Belmonte A., Stone H.A., Critical Angle ...
  • Yang D., Ghadiri M., Sun Y., He L., Luo X., ...
  • Sun Y., Yang D., He L., Luo X., Lu Y., ...
  • Yang D., Sun Y., He L., Luo X., Lu Y., ...
  • Li N., Sun J., Liu W., Li T., Li B., ...
  • Eow J.S., Ghadiri M., Sharif A., Experimental Studies of Deformation ...
  • Allan R.S., Mason S.G., Particle Motions in Sheared Suspensions. XIV. ...
  • Yang D., Sun Y., He L., Luo X., Lu Y., ...
  • Midtgård O.M., Electrostatic Field Theory and Circuit Analysis in the ...
  • Huang X., He L., Luo X., Xu K., Lu Y., ...
  • He X., Wang S.L., Yang Y.R., Wang X.D., Chen J.Q., ...
  • Sun Y., Yang D., Sun H., Wu H., Chang Q., ...
  • He X., Zhang BX., Wang SL., Wang YF., Yang YR., ...
  • Eow J.S., Ghadiri M., Drop–Drop Coalescence in an Electric Field: ...
  • Eow J.S., Ghadiri M., The Behavior of a Liquid–Liquid Interface ...
  • Taylor G.l., McEwan A.D., The Stability of a Horizontal Fluid ...
  • Mhatre S., Vivacqua V., Ghadiri M., Abdullah A.M., Electrostatic Phase ...
  • Aryafar H., Kavehpour H. P., Drop Coalescence Through Planar Surfaces, ...
  • Montgomery D.C., Anderson-Cook C.M.,Response Surface Methodology: Process and Product Optimization ...
  • Yonguep E., Chowdhury M., Optimization of the Demulsification of Crude ...
  • Moriya S., Adachi K., Kotaka T., Deformation of Droplets Suspended ...
  • Sjöblom J., Mhatre S., Simon S., Skartlien R., Sørland G., ...
  • Karyappa R.B., Deshmukh S.D., Thaokar R.M., Breakup of a Conducting ...
  • Eow J.S., Ghadiri M., Sharif A., Deformation and Break-Up of ...
  • Eow J.S., Ghadiri M., Motion, Deformation and Break-Up of Aqueous ...
  • Vivacqua V., Mhatre S., Ghadiri M., Abdullah AM., Electrocoalescence of ...
  • Huang X., He L., Luo X., Xu K., Lu Y., ...
  • Huang X., He L., Luo X., Lu Y., Yang D., ...
  • Li B., Dou X., Huang Y., Zhang W., Coalescence Dynamic ...
  • Li B., Wang Z., Vivacqua V., Ghadiri M., Wang J., ...
  • Blanchette F., Bigioni T.P., Partial Coalescence of Drops at Liquid ...
  • He L., Huang X., Luo X., Yan H., Lu Y., ...
  • نمایش کامل مراجع