Machine Learning-Based Comprehensive Analysis of Phase, Composition, and Microstructure of Yuan Dynasty Oil-Glazed Porcelain
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 18
فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJCCE-44-2_020
تاریخ نمایه سازی: 16 خرداد 1404
چکیده مقاله:
The City Ruins in Jining in Inner Mongolia were an important transportation and trade hub in the Yuan Dynasty. Archaeological excavations have unearthed a large number of black-glazed oil-spot porcelain pieces, providing significant materials for studying ancient Chinese ceramic firing techniques. Using technologies such as super depth-of-field microscopy, X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDS), and Raman spectroscopy, this paper conducts a scientific archaeological analysis on representative samples. The results show that the chemical composition of the body of the glazed oil-spot porcelain unearthed from Jining site possesses remarkable characteristics of northern Chinese porcelain, which has rich aluminum and poor silicon. Analysis of the micro-structure and phase of the crystals on the glaze surface reveals an iron oxide crystalline phase transformation in the order of γ-Fe۲O۳→ε-Fe۲O۳→α-Fe۲O۳. The formation mechanism of the glaze surface is identified as anorthite crystallization --intergranular liquid phase separation -iron oxide crystallization. The glaze's chemical composition features rich Fe۲O۳ (۶.۲۶۸%), rich CaO (۵.۵۲۷%), and poor Al۲O۳ (۱۴.۹۴۵%), with an average RO content of ۰.۷۶. Analysis of the micro-structure and phase of the crystals on the glaze surface reveals an iron oxide crystalline phase transformation in the order ofγ-Fe۲O۳→ε-Fe۲O۳→α-Fe۲O۳. The formation mechanism of the glaze surface is identified as anorthite crystallization --intergranular liquid phase separation -iron oxide crystallization. This paper utilized an Artificial Neural Network (ANN) to better understand the conditions and interrelationships among parameters. These practical networks have proven successful in diverse functions and complex problems, even with training data errors. The study showed neural networks to investigate enamel phase transformation, and formation by manipulating chemical compositions, with acceptable error confirmed through linear regression. The ANN model was able to predict the enamel microstructure, phase transformation, and formation mechanism with an error of less than ۱% compared to the target values.
کلیدواژه ها:
نویسندگان
Xiaolei Jia
Institute for the History of Science and Technology, Inner Mongolia Normal University, Hohhot, P.R. CHINA
Yongzhi Chen
Inner Mongolia Autonomous Region University Silk Road Traditional Craft Research Base, Inner Mongolia Normal University, Hohhot, P.R. CHINA
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :