Hybridizing Metaheuristic Methods with AI for Accurate Prediction of Residential Energy Consumption
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 39
فایل این مقاله در 25 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJCCE-44-4_019
تاریخ نمایه سازی: 16 خرداد 1404
چکیده مقاله:
Accurately predicting Total Energy Consumption in the Residential Sector is essential for sustainable energy planning. This study introduces four hybrid metaheuristic-artificial intelligence models—Earthworm Optimization Algorithm (EWAMLP), Stochastic Fractal Search (SFSMLP), Vortex Search (VSMLP), and Shuffled Complex Evolution (SCEMLP)—to enhance prediction accuracy. The models were evaluated using Root Mean Squared Error (RMSE) and R-squared (R۲) on training and testing datasets, with swarm sizes optimized for each method. SFSMLP achieved the best overall performance, ranking first with the highest R۲ values of ۰.۹۹۳۶ (training) and ۰.۹۸۵۹ (testing) and the lowest total score. VSMLP, with R۲ values of ۰.۹۹۱۵ (training) and ۰.۹۸۶۶ (testing), tied for first in accuracy while demonstrating efficiency with an optimal swarm size of ۳۰۰. SCEMLP, despite using the smallest swarm size (۵۰), maintained competitive accuracy with R۲ values of ۰.۹۹۱۱ (training) and ۰.۹۸۴۲ (testing), ranking third overall. EWAMLP, with R۲ values of ۰.۹۶۷۳ (training) and ۰.۹۵۷۰ (testing), showed reliable but slightly lower performance, ranking fourth. These findings highlight the potential of hybrid metaheuristic-AI models for precise energy consumption predictions. The superior performance of SFSMLP and VSMLP suggests their suitability for applications requiring high accuracy, while SCEMLP offers a balance of efficiency and reliability. This study provides a robust framework for energy modeling, contributing to advancements in residential energy management and sustainability.
کلیدواژه ها:
نویسندگان
Jianjun Pang
Guangzhou Power Supply Bureau of Guangdong Power Grid Co., Ltd. Guangdong Guangzhou,۵۱۰۶۶۵, P.R. CHINA
Yi Zhou
Guangzhou Power Supply Bureau of Guangdong Power Grid Co., Ltd. Guangdong Guangzhou,۵۱۰۶۶۵, P.R. CHINA
Hua Huang
Guangzhou Power Supply Bureau of Guangdong Power Grid Co., Ltd. Guangdong Guangzhou,۵۱۰۶۶۵, P.R. CHINA
Jinqing Lin
Guangzhou Power Supply Bureau of Guangdong Power Grid Co., Ltd. Guangdong Guangzhou,۵۱۰۶۶۵, P.R. CHINA
Yuxin Yan
Guangzhou Power Supply Bureau of Guangdong Power Grid Co., Ltd. Guangdong Guangzhou,۵۱۰۶۶۵, P.R. CHINA