Optimization and Simulation of Evaluating the Impact of Reactivity Changes in a Typical Pressurized Water Reactor Core with Artificial Neural Networks
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 28
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJCCE-44-4_023
تاریخ نمایه سازی: 16 خرداد 1404
چکیده مقاله:
Pressurized Water Reactors (PWRs) are integral to the nuclear energy sector, necessitating precise modeling of their dynamic behavior for improved safety and performance. This study introduces a novel approach to simulating PWR dynamics using Artificial Neural Networks (ANNs) optimized by three methods: Levenberg-Marquardt (trainlm), Gradient Descent with Momentum (traingdm), and the metaheuristic Whale Optimization Algorithm (WOA). The ANN model is trained on differential equations characterizing PWR dynamics and is evaluated under various reactivity scenarios to analyze key parameters, including thermal and hydrodynamic parameters. The results demonstrate that the optimization method significantly affects the ANN's performance. WOA outperforms other techniques, achieving the lowest mean squared error (۰.۰۰۱۸), highest prediction accuracy (۹۹.۱%), and faster convergence for complex reactor scenarios. Furthermore, the innovative integration of WOA provides robust predictions for reactivity-induced variations, emphasizing its superiority in optimizing ANN models for real-time applications. This research uniquely combines reactor physics and chemical engineering principles, offering a comprehensive analysis of how reactivity changes influence dynamic and chemical behavior in PWRs. By bridging these domains, the study highlights the potential of advanced machine learning methods in enhancing reactor safety and efficiency under diverse operational conditions.
کلیدواژه ها:
Pressurized Water Reactor ، Artificial neural network ، Machine Learning ، Reactivity ، Whale Optimization Algorithm ، Thermal and hydrodynamic parameters
نویسندگان
Omid Safarpour
Department of Nuclear Engineering, Science and Research Branch, Islamic Azad University, Tehran, I.R. IRAN
Gholamreza Jahanfarnia
Department of Nuclear Engineering, Science and Research Branch, Islamic Azad University, Tehran, I.R. IRAN
Ehsan Zarifi
Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, I.R. IRAN Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :