Analysis and Optimization of Customer Lifetime Value Prediction using Machine Learning and Deep Learning Models by RFM Techniques

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 31

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJWR-8-2_006

تاریخ نمایه سازی: 16 خرداد 1404

چکیده مقاله:

In today’s data-driven hospitality sector, customer interactions increasingly occur through digital platforms, generating extensive behavioral and transactional information. This study analyse the prediction of Customer Lifetime Value (CLV) using machine learning models—Linear Regression, Random Forest, and LightGBM—trained on features derived from hotel website interactions and booking records. After comprehensive data preprocessing, the models were evaluated using MAE, RMSE, and R² metrics. LightGBM achieved the highest predictive performance (R² = ۰.۵۰۴), followed by Random Forest (R² = ۰.۴۹۷), while Linear Regression underperformed (R² = ۰.۳۸۶), highlighting the advantages of non-linear models in modeling intricate customer patterns. Residual analyses confirmed LightGBM's stability and low bias across diverse customer profiles. Apart from prediction, the study applies Recency-Frequency-Monetary (RFM) analysis to segment customers into distinct value-based groups. These segments form the basis for tailored marketing strategies, allowing hotels to allocate resources more efficiently, enhance customer retention, and develop targeted campaigns aligned with customer potential. By integrating web-derived behavioral data with advanced modeling and segmentation, this research offers hotel managers practical tools for strategic planning in customer relationship management.

کلیدواژه ها:

Customer Lifetime Value (CLV) ، Machine Learning ، Random forest ، LightGBM ، RFM

نویسندگان

Leila Taherkhani

Department of Information Technology Management, Faculty of Management and Economies, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Amir Daneshvar

Department of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran

Hossein Amoozad Khalili

Department of Industrial Engineering, Sari Branch, Islamic Azad University, Sari, Iran

MohammadReza Sanaei

Department of Information Technology Management, Qazvin Branch, Islamic Azad University, Qazvin, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Gupta, D. Hanssens, B. Hardie, W. Kahn, V. Kumar, N. ...
  • Jain and S. S. Singh, “Customer lifetime value research in ...
  • D. Berger and N. I. Nasr, “Customer lifetime value: Marketing ...
  • Glady, B. Baesens, and C. Croux, “Modeling churn using customer ...
  • R. Mani, J. Drew, A. Betz, and P. Datta, “Statistics ...
  • Pollak, “Predicting Customer Lifetime Values—ecommerce use case,” arXiv preprint arXiv:۲۱۰۲.۰۵۷۷۱, ...
  • P. Chamberlain, A. Cardoso, C. B. Liu, R. Pagliari, and ...
  • D. Dahana, Y. Miwa, and M. Morisada, “Linking lifestyle to ...
  • Čermák, “Customer profitability analysis and customer lifetime value models: Portfolio ...
  • Szilagyi, L. I. Cioca, L. Bacali, E. S. Lakatos, and ...
  • Petrov and C. Macdonald, “RSS: Effective and Efficient Training for ...
  • Luo and N. Mesgarani, “Conv-tasnet: Surpassing ideal time–frequency magnitude masking ...
  • Rey, “Dilemma not trilemma: the global financial cycle and monetary ...
  • H. L. Chen and S. Gunawan, “Enhancing Retail Transactions: A ...
  • Saha, H. K. Tripathy, T. Gaber, H. El-Gohary, and E. ...
  • M. A. Serwah, K. W. Khaw, C. S. P. Yeng, ...
  • Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, ...
  • Y. Benk, B. Badur, and S. Mardikyan, "A new ۳۶۰ ...
  • Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical ...
  • Domingos, “A few useful things to know about machine learning,” ...
  • Kohavi, “A study of cross-validation and bootstrap for accuracy estimation ...
  • Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach. ...
  • Kuhn and K. Johnson, Applied Predictive Modeling, New York: Springer, ...
  • A. Hall, “Correlation-based feature selection for machine learning,” Ph.D. dissertation, ...
  • Caruana and A. Niculescu-Mizil, “An empirical comparison of supervised learning ...
  • Breiman, “Random forests,” Mach. Learn., vol. ۴۵, no. ۱, pp. ...
  • Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” ...
  • E. Hinton, S. Osindero, and Y. Teh, “A fast learning ...
  • Kim, “Convolutional neural networks for sentence classification,” in Proc. ۲۰۱۴ ...
  • P. Kingma and J. Ba, “Adam: A method for stochastic ...
  • Brownlee, Deep Learning for Time Series Forecasting: Predict the Future ...
  • Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale ...
  • Antonio, A. de Almeida, and L. Nunes, "A hotel's customers ...
  • Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.*, vol. ۲۰, ...
  • Joachims, “Text categorization with support vector machines: Learning with many ...
  • R. Rabiner, “A tutorial on hidden Markov models and selected ...
  • M. Bishop, Pattern Recognition and Machine Learning, New York: Springer, ...
  • J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice, ۳rd ...
  • نمایش کامل مراجع