Analysis and Optimization of Customer Lifetime Value Prediction using Machine Learning and Deep Learning Models by RFM Techniques
محل انتشار: فصلنامه بین المللی وب پژوهی، دوره: 8، شماره: 2
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 31
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJWR-8-2_006
تاریخ نمایه سازی: 16 خرداد 1404
چکیده مقاله:
In today’s data-driven hospitality sector, customer interactions increasingly occur through digital platforms, generating extensive behavioral and transactional information. This study analyse the prediction of Customer Lifetime Value (CLV) using machine learning models—Linear Regression, Random Forest, and LightGBM—trained on features derived from hotel website interactions and booking records. After comprehensive data preprocessing, the models were evaluated using MAE, RMSE, and R² metrics. LightGBM achieved the highest predictive performance (R² = ۰.۵۰۴), followed by Random Forest (R² = ۰.۴۹۷), while Linear Regression underperformed (R² = ۰.۳۸۶), highlighting the advantages of non-linear models in modeling intricate customer patterns. Residual analyses confirmed LightGBM's stability and low bias across diverse customer profiles. Apart from prediction, the study applies Recency-Frequency-Monetary (RFM) analysis to segment customers into distinct value-based groups. These segments form the basis for tailored marketing strategies, allowing hotels to allocate resources more efficiently, enhance customer retention, and develop targeted campaigns aligned with customer potential. By integrating web-derived behavioral data with advanced modeling and segmentation, this research offers hotel managers practical tools for strategic planning in customer relationship management.
کلیدواژه ها:
نویسندگان
Leila Taherkhani
Department of Information Technology Management, Faculty of Management and Economies, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Amir Daneshvar
Department of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran
Hossein Amoozad Khalili
Department of Industrial Engineering, Sari Branch, Islamic Azad University, Sari, Iran
MohammadReza Sanaei
Department of Information Technology Management, Qazvin Branch, Islamic Azad University, Qazvin, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :