Classification of Survivors and Non-survivors of the Latest Epidemic Using Association Rules Algorithm

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 19

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JHES-13-2_008

تاریخ نمایه سازی: 12 خرداد 1404

چکیده مقاله:

Background and Purpose: Association rule mining can discover hidden patterns and relationships between variables that may not be apparent through other data analysis techniques. We aimed to find practical patterns in COVID-۱۹ data and predict patient survivor status using association rules. Materials and Methods: In this cross-sectional study, clinical data of ۵۱۴۶۰ hospitalized patients tested by polymerase chain reaction (PCR) were collected from February ۲۰, ۲۰۲۰, to September ۱۲, ۲۰۲۱, in Khorasan Razavi Province, Iran. An Apriori algorithm was used to extract association rules or patterns in data.  Results: Most participants (۵۱.۰%) were male; their Mean±SD age was ۵۴.۵۵±۲۲.۱۵ years. Fever (۳۷%), cough (۳۸.۴%), respiratory distress (۵۶%), PO۲ level less than ۹۳% (۵۲.۹%), muscular pain (۱۹.۱%) and decreased consciousness (۸.۹%) were common symptoms. Based on the association rules, if a patient was older than ۷۵ years, had respiratory distress, reduced consciousness and PO۲ level <۹۳%, then this patient is who has died. The PCR test result of a male who used drugs was positive. Vomit and diarrhea lead to positive PCR test results, too. The most common symptom seen in men was respiratory distress, while the most common symptom in women was hypertension. Muscular pain due to COVID-۱۹ is more common in women than men. Furthermore, the accuracy and area under the receiver operating characteristics curve were obtained as ۹۲.۲۸ and ۸۶.۸۰ on the testing dataset, respectively. Conclusion: Simple methods such as association rules mining and complex methods could be helpful and give valuable results, and predicting death using association rules provides high accuracy.

کلیدواژه ها:

Apriori algorithm ، Association rules mining ، Associative classifiers ، Classification-based association rule (CBA) algorithm ، SARS-CoV-۲

نویسندگان

Nasrin Talkhi

Department of Biostatistics, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Nooshin Akbari sharak

Department of Biostatistics, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Zahra Pasdar

Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition, Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, Scotland.

Maryam Salari

Expert Management and Information Technology, Mashhad University of Medical Sciences, Mashhad, Iran.

Seyed Masoud Sadati

Center of Statistics and Information Technology Management, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.

Mohammad Taghi Shakeri

Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • . Organization, W.H., Coronavirus disease ۲۰۱۹ (COVID-۱۹) situation report-۵۱. ۲۰۲۰ ...
  • . Crossfield, S.S.R., et al., Interplay between demographic, clinical and ...
  • . Hu, C., et al., Early prediction of mortality risk ...
  • . Chen, T., et al., Clinical characteristics of ۱۱۳ deceased ...
  • . Yang, X., et al., Clinical course and outcomes of ...
  • . Control, C.f.D. and Prevention, Severe outcomes among patients with ...
  • . Chechet, G.D., et al., SARS-CoV-۲ seroprevalence at urban and ...
  • . Wadhwa, P., et al., Predicting the time period of ...
  • . Chowdhury, M.E., et al., An early warning tool for ...
  • . Fayyad, U., G. Piatetsky-Shapiro, and P. Smyth, From data ...
  • . Cios, K.J. and G.W. Moore, Uniqueness of medical data ...
  • . Zaki, M.J., Scalable algorithms for association mining. IEEE transactions ...
  • . Biilah, M.A.M., et al. Human Depression Prediction Using Association ...
  • . Ilayaraja, M. and T. Meyyappan. Mining medical data to ...
  • . Abdullah, U., J. Ahmad, and A. Ahmed. Analysis of ...
  • . Jena, L. and N.K. Kamila. A Model for Prediction ...
  • . Lakshmi, K.S. and G. Vadivu, Extracting Association Rules from ...
  • . Kirenz, J. Introduction to Association Rule Mining in R. ...
  • . Zakariya, S.M., A. Yaseen, and I.A. Khan. A Study ...
  • . Lu, P.H., et al., An Apriori Algorithm-Based Association Rule ...
  • . Prabhakaran, S. Association Mining (Market Basket Analysis). ۲۰۱۷; Available ...
  • . Makhtar, M., et al., An Association Rule Mining Approach ...
  • . Altaf, W., M. Shahbaz, and A. Guergachi, Applications of ...
  • . Webb, G.I., Discovering Significant Patterns. Machine Learning, ۲۰۰۷. ۶۸(۱): ...
  • . Bayardo, R.J., R. Agrawal, and D. Gunopulos, Constraint-Based Rule ...
  • . Mittal, K., An approach towards enhancement of classification accuracy ...
  • . Kumi, S., C. Lim, and S.G. Lee, Malicious URL ...
  • . Czibula, G., et al., A novel concurrent relational association ...
  • . Aqra, I., et al., Incremental algorithm for association rule ...
  • . Liu, X., X. Niu, and P. Fournier-Viger, Fast top-k ...
  • . Nahar, J., et al., Association rule mining to detect ...
  • . Ivančević, V., et al., Using association rule mining to ...
  • . Borah, A. and B. Nath, Identifying risk factors for ...
  • . Sharma, S., Concept of association rule of data mining ...
  • . Noguchi, Y., et al., A new search method using ...
  • . Kamalesh, M.D., et al. Predicting the Risk of Diabetes ...
  • . Lau, A., et al. Mining Patterns of Dyspepsia Symptoms ...
  • . Talkhi, N., et al., Modeling and forecasting number of ...
  • . Moftakhar, L., M. Seif, and M.S. Safe, Exponentially Increasing ...
  • . Tamang, S.K., P.D. Singh, and B. Datta, Forecasting of ...
  • . da Silva, R.G., et al., Forecasting Brazilian and American ...
  • . Ballı, S., Data analysis of Covid-۱۹ pandemic and short-term ...
  • . Al-Qaness, M.A.A., et al., Efficient artificial intelligence forecasting models ...
  • . Farooq, J. and M.A. Bazaz, A deep learning algorithm ...
  • . Bhattacharya, S., et al., Deep learning and medical image ...
  • . Nayak, S.R., et al., Application of deep learning techniques ...
  • . Ismael, A.M. and A. Şengür, Deep learning approaches for ...
  • نمایش کامل مراجع