Developing a Hybrid Model for Predicting Financial Performance of Iranian Construction Companies Based on Genetic Algorithm and Adaptive Neuro-Fuzzy Inference System
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 38، شماره: 11
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 44
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-38-11_018
تاریخ نمایه سازی: 11 خرداد 1404
چکیده مقاله:
Analyzing financial ratios over consecutive years is beneficial for evaluating the financial performance of construction companies. However, such an analysis can be tedious due to the vast number of the ratios. Therefore, developing an expert system based on artificial intelligence algorithms to identify and predict factors influencing the construction companies' financial performance is essential. To this end, a hybrid model based on Genetic Algorithm (GA) and Adaptive Neuro-Fuzzy Inference System (ANFIS) was introduced in this research to predict the financial performance of construction companies in Iran. This research is applied as descriptive and in terms of methodology well developed; also conducted cross-sectionally. The statistical population included all active construction companies in the construction sector in Tehran. Due to time and resource constraints, a random sampling technique was used. A questionnaire was utilized for data collection and data analysis, factor analysis methods and neuro-fuzzy system combined with GA were employed. The ANFIS combined with GA can evaluate the construction companies' financial performance with the minimum error. The findings ultimately resulted development of a model that forecasts the financial performance of Iranian construction companies, allowing them to concentrate on factors that improve financial performance.
کلیدواژه ها:
financial performance ، Iranian Construction Companies ، Genetic Algorithm ، adaptive neuro-fuzzy inference system
نویسندگان
F. Eghbal
Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran
M. Ehsanifar
Department of Industrial Engineering, Arak Branch, Islamic Azad University, Arak, Iran
M. Mirhosseini
Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran
H. Mazaheri
Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :