A New Modeling to Feature Selection Based on the Fuzzy Rough Set Theory in Normal and Optimistic States on Hybrid Information Systems

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 12

فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-38-11_015

تاریخ نمایه سازی: 11 خرداد 1404

چکیده مقاله:

Considering the high volume, wide variety, and rapid speed of data generation, investigating feature selection methods for big data presents various applications and advantages. By removing irrelevant and redundant features, feature selection reduces data dimensions, thereby facilitating optimal decision-making within decision systems. One of the key tools for feature selection in hybrid information systems is fuzzy rough set theory. However, this theory faces two significant challenges: First, obtaining fuzzy equivalence relations through intersection operations in high-dimensional spaces can be both time-consuming and memory-intensive. Additionally, this method may produce noisy data, complicating the feature selection process.The purpose and innovation of this paper are to address these issues. We proposed a new feature selection model that calculates the combined distance between objects and subsequently used this information to derive the fuzzy equivalence relation. Rather than directly solving the feature selection problem, this approach reformulates it into an optimization problem that can be tackled using appropriate meta-heuristic algorithms. We have named this new approach FSbuHD. The FSbuHD model operates in two modes—normal and optimistic—based on the selection of one of the two introduced fuzzy equivalence relations. The model is then tested on standard datasets from the UCI repository and compared with other algorithms. The results of this research demonstrate that FSbuHD is one of the most efficient and effective methods for feature selection when compared to previous methods and algorithms.

نویسندگان

M. H. Safarpour

Department of Mathematics and Computer Science, Arak Branch, Islamic Azad University, Arak, Iran

S. M. Alavi

Department of Mathematics and Computer Science, Arak Branch, Islamic Azad University, Arak, Iran

M. Izadikhah

Department of Mathematics and Computer Science, Arak Branch, Islamic Azad University, Arak, Iran

H. Dibachi

Department of Mathematics and Computer Science, Arak Branch, Islamic Azad University, Arak, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Camacho J. Visualizing big data with compressed score plots: approach ...
  • Wang C, Huang Y, Shao M, Fan X. Fuzzy rough ...
  • Chen H, Li T, Fan X, Luo C. Feature selection ...
  • نمایش کامل مراجع