Video Summarization in Detecting Overt Cheating Considering Examinee's Interactions with Scene Objects

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 50

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-39-1_004

تاریخ نمایه سازی: 11 خرداد 1404

چکیده مقاله:

With the increasing demand for e-exams and the application of video surveillance, it is a time-consuming and tedious task for proctors to review a large number of exam videos. To address this issue, the suggestion is to automatically summarize the videos by considering suspected cheating instances for monitoring purposes. This study proposes a novel approach that leverages deep neural networks to analyze the examinee''s interactions with objects within the scene, with an emphasis on video summarization and efficient processing to identify overt instances of cheating. Overt cheating in this context involves physical interactions with objects in the examinee''s environment, such as referring to notes or using mobile devices, to gain an unfair advantage over fellow examinees. The proposed method comprises three main stages: preprocessing, extracting the examinee''s activities, and detecting unauthorized objects in the scene and their potential use for cheating. Initially, the proposed method filters out frames without the examinee''s movements by comparing the similarity of consecutive frames. Subsequently, the examinee''s movements are identified by analyzing changes in the body skeleton. Finally, suspected cheating scenes are detected by evaluating the interactions between the examinee''s body part movements and unauthorized objects present in the scene. The proposed method offers several advantages, including high processing speed, robustness against background changes, and its ability to operate effectively without prior training. Experimental results, obtained from a dataset of ۶۰ hours of exam videos collected from ۱۲۰ undergraduate students participating in various assessments, demonstrate that the proposed method successfully detects all instances of overt cheating and suspected cheating while reducing the overall video length by ۷۰%, significantly reducing the time required for manual review.

نویسندگان

M. Marvi Mohajer

Faculty of Computer Engineering, Shahrood University of Technology, Iran

H. Hassanpour

Faculty of Computer Engineering, Shahrood University of Technology, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :