A Novel Approach for Accurate Wind Speed Time Series Forecasting Using ICEEMDAN Decomposition and Sample Entropy through Integration of Deep Learning Models

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 40

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-39-2_003

تاریخ نمایه سازی: 11 خرداد 1404

چکیده مقاله:

This study proposes a novel hybrid model for wind speed forecasting (WSF) based on a three-stage framework comprising decomposition, feature selection, and forecasting. The proposed approach employs Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) to decompose wind speed time series into Intrinsic Mode Functions (IMFs). A distinctive contribution of this study is the use of sample entropy as a feature selection mechanism to identify the most relevant Intrinsic Mode Functions (IMFs). The selected IMFs are then integrated through a classification-based fusion technique, significantly enhancing forecasting accuracy and distinguishing this approach from conventional methods. Two distinct forecasting approaches are evaluated using multiple performance metrics, including RMSE, MAE, MAPE, and R². The first approach applies the fusion technique directly to the original wind speed time series, while the second incorporates ICEEMDAN to decompose the time series. Experimental validation using two real-world datasets from Algeria demonstrates the superiority of the proposed hybrid model over individual forecasting models, yielding significant improvements in prediction accuracy, robustness, and stability. These findings underscore the effectiveness of the three-stage framework, offering a reliable and efficient solution for short-term wind speed forecasting, with potential applications in renewable energy management and grid optimization.

نویسندگان

H. Mezaache

Department of Electronics, Faculty of Technology, University of M’sila, Lab. G.E. University Pole, Algeria

H. Bouzgou

Department of Industrial Engineering, Faculty of Technology, Laboratory of Automation and Manufacturing, University of Batna ۲ (Mostefa Ben Boulaïd), Batna, Algeria

C. Raymond

INSA Rennes, INRIA/ IRISA Beaulieu Campus ۳۵۰۴۲ Rennes, France

N. Zemouri

Department of Electronics, Faculty of Technology, University of M’sila, Lab. G.E. University Pole, Algeria

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Kaygusuz K. Renewable energy: Power for a sustainable future. Energy ...
  • Colominas MA, Schlotthauer G, Torres ME. Improved complete ensemble EMD: ...
  • Yao P, Xue J, Zhou K, Wang X. Sample Entropy‐Based ...
  • Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. ۱۹۹۷;۹(۸):۱۷۳۵-۸۰. ...
  • نمایش کامل مراجع