Attitude Toward EFL Reading as Predicted by Self-Reported Self-Regulation Ability
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 47
فایل این مقاله در 29 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JALST-3-1_006
تاریخ نمایه سازی: 10 خرداد 1404
چکیده مقاله:
Through academic self-regulation, learners use affective, cognitive, motivational, and behavioral feedback to adjust their strategies and behaviors to attain their goals. The present study utilized a correlational research design to explore how EFL intermediate learners’ self-reported self-regulation ability would predict their attitude toward EFL reading. The participants were ۹۱ Iranian EFL learners in some English language institutes. They were put in the intermediate classes at the beginning of their program on the basis of their scores on the Preliminary English Test (PET). They were assigned the L۲ Reading Attitude Questionnaire and the Self-Regulated Foreign Language Learning Strategy Questionnaire (SRFLLSQ). The results of multiple regression analysis indicated that the metacognitive factor played the most strongly predicted attitude toward EFL reading, followed by cognitive, meta-affective, and meta-sociocultural-interactive factors. The sociocultural-interactive factor, albeit still relevant, was the weakest predictor of attitude toward EFL reading. The findings underline the different aspects of attitude toward EFL reading and self-regulation, with implications for EFL reading teachers and curriculum designers.
کلیدواژه ها:
attitude to EFL reading ، cognitive ، metacognitive ، meta-affective ، sociocultural-interactive ، and meta-sociocultural-interactive self-regulation strategies
نویسندگان
- -
Assistant Professor of ELT, Department of English Translation, Faculty of Humanities, Tolou-e Mehr Non-profit University, Qom, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :