Facial Expression Recognition Using Geometric Normalization and Appearance Representation
محل انتشار: هشتمین کنفرانس ماشین بینایی و پردازش تصویر ایران
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,334
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICMVIP08_173
تاریخ نمایه سازی: 9 بهمن 1392
چکیده مقاله:
Facial expression recognition is a challenging andinteresting problem in computer vision and pattern recognition.Geometric variability in both emotion expression and neutralface is a fundamental challenge in facial expression recognitionproblem. This variability not only directly affects geometricfacial expression recognition methods, but also is a criticalproblem in appearance methods. To overcome this problem, thispaper presents an approach which eliminates geometricvariability in emotion expression; thus, appearance features canbe accurately used for facial expression recognition. Therefore, afixed geometric model is used for geometric normalization offacial images. This model is defined as one of the emotionalexpressions. In addition Local Binary Patterns are utilized torepresent facial appearance features. Experimental results showthat the proposed method is more accurate than the existingworks. Also for facial expression recognition, using geometricexpression models of facial images where they have larger size inmouth/eyes regions, such as Surprise, gives better resultsindicating that mouth and eyes are important regions in emotionexpression.
کلیدواژه ها:
facial expression recognition ، face geometry normalization ، Local Binary Patterns (LBP) ، Piecewise Linear Warp ، Support Vector Machine (SVM)
نویسندگان
Hamid Sadeghi
Electrical Engineering Department Amirkabir University of Technology
Abolghasem A. Raie
Electrical Engineering Department Electrical Engineering Department
Mohammad-Reza Mohammadi
Electrical Engineering Department Sharif University of Technology
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :