Low-light Image Enhancement Using Deep Neural Network: An Improvement on ZeroDCE++
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 174
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICAIFT02_025
تاریخ نمایه سازی: 6 خرداد 1404
چکیده مقاله:
This paper presents a no-reference deep neural network technique to improve the quality of images captured in challenging lighting conditions that can overcome issues like noise and loss of object detail. Several effective methods, like ZeroDCE++, enhance low-light images. However, most perform well only on images similar to those seen during training, i.e. images under a narrow range of brightness variation. In this work, first a pre-processing step is designed to mitigate noise in dark areas of low-light images and to prevent saturation in regions with excessive illumination. In addition, a loss function is introduced to preserve color balance during the training phase. The qualitative and quantitative results show that the proposed method significantly enhances low-light images in comparison with SOTA especially with ZeroDCE++.
کلیدواژه ها:
نویسندگان
Alireza Khajehvandi
Faculty of Electrical and Computer Engineer, Babol Noshirvani University of Technology, Babol, Iran
Mehdi Ezoji
Faculty of Electrical and Computer Engineer, Babol Noshirvani University of Technology, Babol, Iran