Automated Detection and Quantification of Microstructural Defects in Images of ۳D-Printed Ti۶Al۴V Using Deep Learning
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 69
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICAIFT02_024
تاریخ نمایه سازی: 6 خرداد 1404
چکیده مقاله:
Detecting microstructural defects in additively manufactured Ti۶Al۴V components is crucial due to their impact on mechanical properties. This research utilizes an advanced deep learning method, YOLOv۱۰x, to identify three key defect types—Pore, Lack of Fusion (LOF), and Un-melted Powder (UP)—in scanning electron microscopy (SEM) images, achieving over ۹۰% confidence in detection. A Microstructural Defect Dataset was used for model training. To further characterize defects, a developed Python script calculates geometric features by inscribing an oval in the bounding box of detected defects and computing center coordinates, diameters, and area. These analyses enhance understanding of defect size, shape, and effects on microstructural integrity, aiding quality control in additive manufacturing. The results show the model’s robust capability for accurate automatic defect detection and characterization across various defect types. The approach could be promising for advancing automated inspection in additive manufacturing.
کلیدواژه ها:
Microstructural Defect Detection ، Deep Learning ، You Only Look Once (YOLO) v۱۰ ، Additive Manufacturing ، Ti۶Al۴V ، Scanning Electron Microscopy (SEM)
نویسندگان
Mohammadreza Hassanzadeh Talouki
Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol
Mohammad Javad Mirnia
Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol
Majid Elyasi
Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol