Improvement in intent detection and slot filling by model enhancement and different data augmentation strategies

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 109

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

IAICONF01_002

تاریخ نمایه سازی: 31 اردیبهشت 1404

چکیده مقاله:

Intent detection and slot filling are crucial for understanding human language and are essential for creating intelligent virtual assistants, chatbots, and other interactive systems that interpret user queries accurately. Recent advancements, especially in transformer-based architectures and large language models (LLMs), have significantly improved the effectiveness of intent detection and slot filling. This paper, proposes a method for effectively utilizing low volume fine-tuning data samples to enhance the natural language comprehension of lightweight language models, yielding a nimble and efficient approach. Our approach involves augmenting new data while increasing model layers to enhance understanding of desired intents and slots. We explored various synonym replacement methods and prompt-generated data samples created by large language models. To prevent semantic meaning disturbance, we established a lexical retention list containing non- slots to preserve the sentence's core meaning. This strategy enhances the model's slot precision, recall, Fl-score, and exact match metrics by ۱.۴۱%, ۱.۸%, ۱.۶۱%, and ۳.۸۱%, respectively, compared to not using it. The impact of increasing model layers was studied under different layer arrangement scenarios. Our results show that our proposed solution outperforms the baseline by ۱۰.۹۵% and ۴.۸۹% in exact match and slot Fl-score evaluation metrics.

نویسندگان

Mohammad Mahdi HajiRamezanAli

ShahabDanesh University Qom, Pardisan, Iran

Hasan Deldar

Shahab Danesh University Qom, Pardisan, Iran

Mohammad Mehdi Homayounpour

ShahabDanesh University Qom, Pardisan, Iran