Unite and conquer approach for data clustering based on particle swarm optimization and moth flame optimization

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 54

فایل این مقاله در 33 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAO-15-33_003

تاریخ نمایه سازی: 28 اردیبهشت 1404

چکیده مقاله:

Data clustering is a widely used technique in various domains to group data objects according to their similarity. Clustering molecules is a useful process where you can easily subdivide and manipulate and large datasets to group compounds into smaller clusters with similar properties. To dis-cover new molecules with optimal properties and desired biological activity, can be used by comparing molecules and their similarities. A prominent clustering technique is the k-means algorithm, which assigns data objects to the nearest cluster center. However, this algorithm relies on the ini-tial selection of the cluster centers, which can affect its convergence and quality. To address this issue, metaheuristic algorithms have been proposed as a type of approximate optimization algorithm capable of identifying almost optimal solutions. In this paper, a new meta-heuristic approach is proposed by combining two algorithms of particle swarm optimization (PSO) and moth flame optimization (MFO), following that, it is used to improve data clustering. The  fficiency of the proposed approach is evaluated utilizing benchmark functions F۱-F۲۳. Its efficiency is evaluated with PSO and MFO algorithms on different datasets. Our experiential results show that the suggested approach exceeds the PSO and MFO algorithms with respect to speed of convergence and clustering quality.

نویسندگان

E. Mosavi

Parallel Processing Laboratory, Yazd University, Yazd, Iran.

S.A. Shahzadeh Fazeli

Parallel Processing Laboratory, Yazd University, Yazd, Iran.

E. Abbasi

Department of Computer Science, Yazd University, Yazd, Iran.

F. Kaveh-Yazdy

Researcher at Oncober, Basel, Switzerland.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abdollahzadeh, B., Gharehchopogh, F.S., Khodadadi, N. and Mirjalili, S. Mountain ...
  • Agushaka, J.O., Ezugwu, A.E. and Abualigah, L. Dwarf mongoose op-timization ...
  • Ahmad, A. and Dey, L. A k-mean clustering algorithm for ...
  • Alhawarat, M. and Hegazi, M. Revisiting K-Means and topic modeling, ...
  • Aljarah, I., Mafarja, M., Heidari, A.A., Faris, H. and Mirjalili, ...
  • Almasri, A., Alkhawaldeh, R.S. and Çelebi, E. Clustering-Based EMT Model ...
  • Alswaitti, M., Albughdadi, M. and Isa, N.A.M. Variance-based differential evolution ...
  • Barbakh, W.A. Wu, Y. and Fyfe, C. Review of clustering ...
  • Çomak, E. A modified particle swarm optimization algorithm using Renyi ...
  • Dorigo, M., Bonabeau, E. and Theraulaz, G. Ant algorithms and ...
  • Eberhart, R. and Kennedy, J. Particle swarm optimization, InProceed-ings of ...
  • Eesa, A.S. and Orman, Z. A new clustering method based ...
  • Gan, G., Ma, C. and Wu, J. Data clustering: theory, ...
  • Gandomi, A.H., Yang, X.S. and Alavi, A.H. Cuckoo search algorithm, ...
  • Hu, F., Liu, J., Li, L. and Liang, J. Community ...
  • Jadhav, A.N. and Gomathi, N. Kernel-based exponential grey wolf opti-mizer ...
  • Jadhav, A.N. and Gomathi, N. WGC: Hybridization of exponential grey ...
  • Jain, A.K. Data clustering: ۵۰ years beyond K-means, Pattern Recognit. ...
  • Jain, A.K. and Dubes, R.C. Algorithms for Clustering Data, Englewood ...
  • Kumar, N. and Kumar, H. A fuzzy clustering technique for ...
  • Kumar, Y. and Sahoo, G. Hybridization of magnetic charge system ...
  • Kushwaha, N., Pant, M., Kant, S. and Jain, V.K. Magnetic ...
  • Liang, J., Suganthan, P. and Deb, K. Novel composition test ...
  • Luque-Chang, A., Cuevas, E., Fausto, F., Zaldívar, D. and Pérez, ...
  • Lv, Z., Liu, T., Shi, C., Benediktsson, J.A. and Du, ...
  • MacQueen, J. Some methods for classification and analysis of multivari-ate ...
  • Mansalis, S., Ntoutsi, E., Pelekis, N. and Theodoridis, Y. An ...
  • Meng, Y., Liang, J., Cao, F. and He, Y. A ...
  • Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, ...
  • Mirjalili, S. and Lewis, A. The whale optimization algorithm, Adv. ...
  • Mirjalili, S., Mirjalili, S.M. and Lewis, A. Grey wolf optimizer, ...
  • Nanda, S.J. and Panda, G. A survey on nature inspired ...
  • Nasiri, J. and Khiyabani, F.M. A whale optimization algorithm (WOA) ...
  • Rodriguez, M.Z., Comin, C.H.v Casanova, D., Bruno, O.M., Aman-cio, D.R., ...
  • https://doi.org/۱۰.۱۳۷۱/journal.pone.۰۲۱۰۲۳۶[۳۶] Saida, I.B., Nadjet, K. and Omar, B. A new ...
  • Sayed, G.I. and Hassanien, A.E. A hybrid SA-MFO algorithm for ...
  • Shojaee, Z., Shahzadeh Fazeli, S.A., Abbasi, E. and Adibnia, F. ...
  • Singh, T. A novel data clustering approach based on whale ...
  • Singh, T. and Mishra, K.K. Data clustering using environmental adap-tation ...
  • Singh, T., Mishra, K.K. and Ranvijay. A variant of EAM ...
  • Singh, T., Saxena, N., Khurana, M., Singh, D., Abdalla, M. ...
  • Suganthan, P.N., Hansen, N., Liang, J. J., Deb, K., Chen, ...
  • Talevi, A. and Bellera, CL. Clustering of small molecules: new ...
  • Wolpert, D.H. and Macready, W.G. No free lunch theorems for ...
  • Zhang, Q.H., Li, B.L., Liu, Y.J., Gao, L., Liu, L.J. ...
  • Zhu, J., Jiang, Z., Evangelidis, G.D., Zhang, C., Pang, S. ...
  • نمایش کامل مراجع