Exploring hyperchaotic synchronization of a fractional-order system without equilibrium points: A sliding mode control approach

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 94

فایل این مقاله در 23 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAO-15-33_004

تاریخ نمایه سازی: 28 اردیبهشت 1404

چکیده مقاله:

Recently, constructing hidden attractors of chaotic systems without equi-librium point has become a key discussion point in the application fields of chaos and hyperchaos science. This paper introduces a novel hyperchaotic system without equilibrium points, distinct from existing systems that rely on the Shilnikov criterion for demonstrating hyperchaos. This study inves-tigates the qualitative properties of the system, including its hyperchaotic attractors, Poincare map, Lyapunov exponents, and Kaplan-Yorke dimen-sion. To enhance the practical applicability of this system, an integral sliding mode control method for synchronization is proposed. Lyapunov theory ensures the stability and effectiveness of the synchronization scheme.The efficiency of the approach is demonstrated by numerical simulations, which validate the potential of the system for various applications.

نویسندگان

R.A. Meskine

Laboratory of mathematics and their interactions, Department of Mathematics, Institute of Mathematics and Computer Science, Abdelhafid Boussouf University Center, Mila, Algeria.

S. Kaouache

Laboratory of mathematics and their interactions, Department of Mathematics, Institute of Mathematics and Computer Science, Abdelhafid Boussouf University Center, Mila, Algeria.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Al-sawalha, M.M. Synchronization of different fractional-order chaotic systems using modify ...
  • Bensimessaoud, S. and Kaouache, S. A general fractional control scheme ...
  • Bensimessaoud, S., Kaouache, S. and Abdelouahab, M.-S. Chaos combi-nation anti-synchronization ...
  • Bhalekar, S. and Daftardar-Gejji, V. Synchronization of different fractional-order chaotic ...
  • Bhat, M. A. and Shikha. Complete synchronization of non-identical frac-tional ...
  • Boiko, I., Fridman, I., Iriarte, R., Pisano, A. and Usai, ...
  • Bouzeriba, A., Boulkroune, A. and Bouden, T. Projective synchroniza-tion of ...
  • Bowonga S., Kakmenib, M. and Koinac, R. Chaos synchronization and ...
  • Chai, Y., Chen, L., Wu, R. and Dai, J. Q ...
  • Cook, A.E. and Roberts, P.H. The Rikitake two disk dynamo ...
  • Danca, M.F. and Kuznetsov, N. MATLAB code for Lyapunov expo-nents ...
  • Diethelm K. and Ford, N.J. Analysis of fractional differential equations, ...
  • Dong, C. and Wang, J. Hidden and coexisting attractors in ...
  • Du, C., Liu, L. and Shi, S. Synchronization of fractional-order ...
  • El-Shahed, M. MHD of a fractional viscoelastic fluid in a ...
  • Flores-Tlacuahuac, F. and Biegler, L.T. Optimization of fractional-order dynamic chemical ...
  • Hartley, T.T., Lorenzo, C.F. and Qammar, H.K. Chaos in a ...
  • Jesus, I.S. and Machado, J.T. Fractional control of heat diffusion ...
  • Kaouache, S. Projective synchronization of the modified fractional-order hyperchaotic Rossler ...
  • Kaouache, S. General method for hybrid projective combination synchro-nization of ...
  • Kaouache, S. and Abdelouahab, M.S. Modified projective synchroniza-tion between integer ...
  • Kaouache, S. and Abdelouahab, M.S. Generalized synchronization be-tween two chaotic ...
  • Kaouache, S. and Abdelouahab, M.S. Inverse matrix projective syn-chronization of ...
  • Kaouache, S., Abdelouahab, M.S. and Bououden, R. Reduced generalized combination ...
  • Kaouache, S. and Bouden, T. Modified hybrid synchronization of iden-tical ...
  • Kaouache, S., Hamri, N.D., Hacinliyan, A.S., Kandiran, E., Deruni, B. ...
  • Kiani-B, A., Fallahi, L., Pariz, K. and Leung, H. A ...
  • Kilbas, A., Srivastava H. and Trujillo J. Theory and applications ...
  • Labed, B., Kaouache, S. and Abdelouahab, M.S. Control of a ...
  • Li, C. and Chen, G. Chaos in the fractional order ...
  • Li, C. and Chen, G. Chaos and hyperchaos in the ...
  • Li, C. and Deng, W.H. Chaos synchronization of fractional-order differ-ential ...
  • Lin, J., Yan, J. and Liao, T. Chaotic synchronization via ...
  • Lin, L., Zhuang, Y., Xu, Z., Yang, D. and Wu, ...
  • Lu, J. Chaotic dynamics of the fractional-order Lu system and ...
  • Lu, L. Synchronization of a class of fractional-order chaotic systems ...
  • Muthukumar, P., Balasubramaniam, P. and Ratnavelu, K. Synchro-nization of a ...
  • Pecora, L.M. and Carroll, T.L. Synchronization in chaotic systems, Phys. ...
  • Pham, V.T., Rahma, F., Frasca, M. and Fortuna, L. Dynamics ...
  • Pikovsky, A.S., Rosenblum, M.G., Osipov, G.V. and Kurths, J. Phase ...
  • Rikitake, T. Oscillations of a system of disk dynamos, Math. ...
  • Rossler, O. An equation for hyperchaos, Phys. Lett. A, ۷۱(۲-۳) ...
  • Sau, N.H., Binh, T.N., Thanh, N.T. and Thuan, M.V. Event-triggered ...
  • Shao, S. and Chen, M. Fractional-order control for a novel ...
  • Sheu, L. A speech encryption using fractional chaotic systems, Nonlinear ...
  • Tabasi, M., Hosseini, S.A. and Houshmand, M. Stability analysis of ...
  • Vafaei, V., Jodayree Akbarfam, A. and Kheiri, H. A new ...
  • Vaidyanathan, S., Dolvis, L. G., Jacques, K., Lien, C. H. ...
  • Vaidyanathan, S., Volos, Ch.K. and Pham, V.T. Analysis, control, syn-chronization ...
  • Volos, Ch.K., Kyprianidis, I.M. and Stouboulos, I.N. Image encryption process ...
  • Wang, Z., Cang, S., Ochola, E.O. and Sun, Y. A ...
  • Wei, J., Zhang, C., Guo, Y. and Wang, F. Cluster ...
  • Wu, X. and Lu, Y. Generalized projective synchronization of the ...
  • Yang, N. and Liu, C. A novel fractional-order hyperchaotic system ...
  • Zhang, C., Zhang, C., Zhang, X. and Liang, Y. Sampling-based ...
  • Zhang, R. and Yang, S. Adaptive synchronization of fractional-order chaotic ...
  • Zhang, S. and Zeng, Y. A simple Jerk-like system without ...
  • Zhou, J. and Bao, H. Fixed-time synchronization for competitive neural ...
  • نمایش کامل مراجع