An accurate numerical technique for solving a special case of fractional differential equations using the Khalouta transform of two different fractional derivatives

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 58

فایل این مقاله در 20 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAO-15-33_008

تاریخ نمایه سازی: 28 اردیبهشت 1404

چکیده مقاله:

The aim of this paper is to present a novel coupling approach of the Khalouta transform method and the homotopy perturbation method in order to obtain an accurate and efficient method for solving a special case of fractional differential equations involving Caputo and Caputo-Fabrizio fractional derivatives. This method is called the fractional Khalouta ho-motopy perturbation method (FKHHPM). In particular, the FKHHPM is used to obtain a solution to the fractional reaction-diffusion-convection equations. The convergence analysis and a numerical example are pre-sented. To evaluate the effectiveness of the proposed computational strat-egy, we examine the convergence of the series solution over different frac-tional values and evaluate the behavior of the solution as the time do-main increases. The efficiency and originality of the FKHHPM are demon-strated by calculating the absolute error. This work is supported by two-dimensional and three-dimensional graphical representations made in ac-cordance with MATLAB.

نویسندگان

A. Khalouta

Laboratory of Fundamental and Numerical Mathematics, Department of Mathematics, Faculty of Sciences, Setif ۱ University-Ferhat ABBAS, Algeria.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abdeljawad, T. On conformable fractional calculus, Int. J. Comput. Appl. ...
  • Alazman, I., Mishra, M.N., Alkahtani, B.S. and Dubey, R.S Analysis ...
  • Allaire, G. and Raphael, A.L. Homogenization of a convection-diffusion model ...
  • Atangana, A. and Baleanu, D. New fractional derivatives with non-local ...
  • Baskonus, H.M., Mekkaoui, T., Hammouch, Z. and Bulut, H. Active ...
  • Caputo, M. and Fabrizio, M. A new definition of fractional ...
  • Crauste, F., Lhassan, M. and Kacha, A. A delay reaction–diffusion ...
  • Dastjerdi, R.H. and Ahmadi, G. Designing the sinc neural networks ...
  • Dubeya, R.S., Mishraa, M.N. and Goswami, P. Systematic analysis of ...
  • Ferreira, S., Martins, M. and Vilela, M. Reaction-diffusion model for ...
  • He, J.H. Application of homotopy perturbation method to nonlinear wave ...
  • Hilton, H.H. Generalized fractional derivative anisotropic viscoelastic characterization, Mater. ۵ ...
  • Iaffaldano, G., Caputo, M. and Martino, S. Experimental and theoretical ...
  • Kamocki, R. A new representation formula for the Hilfer fractional ...
  • Khalouta, A. A new exponential type kernel integral transform: Khalouta ...
  • Khalouta, A. The study of nonlinear fractional partial differential equa-tions ...
  • Khalouta, A. New results of the ρ-Jafari transform and their ...
  • Khalouta, A. Khalouta transform via different fractional derivative op-erators, Vestn. ...
  • Kilbas, A., Srivastava, H.M. and Trujillo, J.J. Theory and application ...
  • Kumawat, N., Shukla, A., Mishra, M.N., Sharma, R. and Dubey, ...
  • Losada, J. and Nieto, J.J. Properties of a new fractional ...
  • Magin, R.L. Fractional calculus in bioengineering, Begell House Inc. Publishers, ...
  • Miller, K.S. and Ross, B. An introduction to the fractional ...
  • Mohyud-Din, S.T. Noor, M.A. and Noor, K.I. Traveling wave solutions ...
  • Podlubny, I. Fractional differential equations, Academic Press, New York, ۱۹۹۹ ...
  • Sandev, T., Metzler, R. and Tomovski, Z. Fractional diffusion equation ...
  • Shidfar, A., Babaei, A. Molabahrami, A. and Alinejadmofradi, M. Ap-proximate ...
  • Siddheshwar, P.G. and Manjunath, S. Unsteady convective-diffusion with heterogeneous chemical ...
  • Yadav, S.K., Purohit, M., Gour, M.M., Yadav, L.K. and Mishra, ...
  • نمایش کامل مراجع