Numerical design of nonstationary wavelets: Enhanced filter design andapplications in image compression
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 62
فایل این مقاله در 24 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAO-15-33_012
تاریخ نمایه سازی: 28 اردیبهشت 1404
چکیده مقاله:
In this study, we propose a novel method for computing both primal and dual filters for nonstationary biorthogonal wavelets, offering an advanced approach to wavelet filter design. The key challenge in image compres-sion that this study addresses is the inefficiency of conventional station-ary wavelets, which rely on fixed filter banks that do not adapt to local variations in an image. This limitation results in suboptimal compression performance, particularly for images with varying statistical properties and localized features. To address this, we use a nonstationary biorthogonal fil-ter banks, which modify basis functions at different scaling levels, leading to improved frequency resolution, signal representation, and compression efficiency. Our technique employs cardinal Chebyshev B-splines to derive explicit formulas for the primal filters, enabling precise calculation of filter coeffi-cients essential for wavelet transforms. Additionally, we enforce normality and biorthogonality conditions within nonstationary multiresolution anal-ysis to maintain the relationship between primal and dual wavelet filters at each scaling level. This structured approach allows for explicit formulation of the dual filters while ensuring accurate decomposition and reconstruc-tion. Experimental results confirm that the proposed method improves compression efficiency over conventional Daubechies biorthogonal filters, increasing the number of zero coefficients in compressed images. This leads to better visual quality and reduced storage requirements while maintaining computational efficiency. Such improvements are particularly beneficial in applications requiring high-fidelity image reconstruction, such as medical imaging, satellite data processing, and video compression. MATLAB sim-ulations validate the effectiveness of the approach, making it a promising alternative for image processing and data compression applications.
کلیدواژه ها:
نویسندگان
A. Boussaad
Department of Mathematics, Faculty of Mathematics And Computer Science, University of Batna ۲, Algeria.
Y. Fourar
Department of Mathematics, Faculty of Mathematics And Computer Science, University of Batna ۲, Algeria.
K. Melkemi
Department of Mathematics, Faculty of Mathematics And Computer Science, University of Batna ۲, Algeria.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :