A parameter uniform hybrid approach for singularly perturbed two-parameter parabolic problem with discontinuous data

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 56

فایل این مقاله در 42 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAO-15-33_013

تاریخ نمایه سازی: 28 اردیبهشت 1404

چکیده مقاله:

In this article, we address singularly perturbed two-parameter parabolic problem of the reaction-convection-diffusion type in two dimensions. These problems exhibit discontinuities in the source term and convection coeffi-cient at particular domain points, which result in the formation of interior layers. The presence of two perturbation parameters leads to the formation of boundary layers with varying widths. Our primary focus is to address these layers and develop a scheme that is uniformly convergent. So we propose a hybrid monotone difference scheme for the spatial direction, im-plemented on a specially designed piece-wise uniform Shishkin mesh, com-bined with the Crank–Nicolson method on a uniform mesh for the temporal direction. The resulting scheme is proven to be uniformly convergent, with an order of almost two in the spatial direction and exactly two in the tem-poral direction. Numerical experiments support the theoretically proven higher order of convergence and show that our approach results in bet-ter accuracy and convergence compared to other existing methods in the literature.

نویسندگان

N. Roy

Department of Science and Mathematics, Indian Institute of Information Technology Guwahari, Bongora, Assam,۷۸۱۰۱۵.

A. Jha

Department of Science and Mathematics, Indian Institute of Information Technology Guwahari, Bongora, Assam,۷۸۱۰۱۵.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Bullo, T.A., Duressa, G.F. and Degla, G.A. Higher order fitted ...
  • Cen, Z. A hybrid difference scheme for a singularly perturbed ...
  • Chandru, M., Das, P. and Ramos, H. Numerical treatment of ...
  • Chandru, M., Prabha, T., Das, P. and Shanthi, V. A ...
  • Equ. Dyn. Syst. ۲۷ (۲۰۱۹), ۹۱–۱۱۲ ...
  • Crank, J. and Nicolson, P. A practical method for numerical ...
  • Das, P. A higher order difference method for singularly perturbed ...
  • Das, P. and Mehrmann, V. Numerical solution of singularly perturbed ...
  • Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E. and Shishkin,G.I. ...
  • Gracia, G.L. and O’Riordan, E. Numerical approximation of solution derivatives ...
  • Gupta, V., Kadalbajoo, M.K. and Dubey, R.K. A parameter-uniformhigher order ...
  • Math. ۹۶(۳) (۲۰۱۸), ۱–۲۹ ...
  • Kadalbajoo, M.K. and Yadaw, A.S. Parameter-uniform finite ele-ment method for ...
  • Kumar, D. and Kumari, P. Uniformly convergent scheme for two-parameter ...
  • Markowich, P.A. A finite difference method for the basic stationary ...
  • Mekonnen, T.B. and Duressa, G.F. Computational method for singularly perturbed ...
  • Mukherjee, K. and Natesan, S. ϵ-uniform error estimate of hybrid ...
  • Munyakazi, J.B. A robust finite difference method for two-parameter parabolic ...
  • O’Malley, R.E. Introduction to Singular Perturbations, Academic Press, New York, ...
  • O’Riordan, E., Pickett, M.L. and Shishkin, G.I. Singularly perturbed problems ...
  • O’Riordan, E., Shishkin, G.I. and Picket, M.L. Parameter-uniform finite difference ...
  • Schlichting, H. Boundary Layer Theory, seventh ed., McGraw-Hill, New York, ...
  • Singh, S. and Kumar, D. Parameter uniform numerical method for ...
  • Singh, S., Choudhary, R. and Kumar, D. An efficient numerical ...
  • ۴۲(۶۲) (۲۰۲۳), ۴۲–۶۲ ...
  • Stynes, M. and Roos, H.G. The midpoint upwind scheme, Appl. ...
  • Zahra, W.K., El-Azab, M.S. and El Mhlawy, A.M. Spline difference ...
  • نمایش کامل مراجع