A numerical algorithm based on Jacobi polynomials for FIDEs with error estimation

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 27

فایل این مقاله در 53 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAO-15-33_014

تاریخ نمایه سازی: 28 اردیبهشت 1404

چکیده مقاله:

This study aims to address a specific class of mathematical problems known as fractional integro-differential equations. These equations are used to model various phenomena„ including heat conduction in materials with memory, damping laws, diffusion processes, earthquake models, fluid dy-namics, traffic flow, and continuum mechanics. This research focuses on problems where the fractional derivative operator is defined in the Caputo sense. Our proposed methodology employs an operational approach based on the use of shifted Jacobi polynomials. We derive operational matrices for fractional integration and product, which are then applied to approx-imate solutions for both linear and nonlinear problems. By using these matrices in conjunction with the collocation method, we transform the orig-inal problem into a system of algebraic equations. Notably, our approach is simpler and more cost-effective compared to established methods such as Adomian decomposition, Homotopy perturbation, Sinc-collocation, and Legendre wavelet techniques. We provide several illustrative examples to validate our method’s effectiveness and reliability. Additionally, we present theorems concerning the existence of a unique solution and the convergence of our proposed approach.

نویسندگان

K. Sadri

Faculty of Art and Science, University of Kyrenia, Kyrenia, TRNC, Mersin ۱۰, Turkey.

D. Amilo

Faculty of Art and Science, University of Kyrenia, Kyrenia, TRNC, Mersin ۱۰, Turkey.

E. Hincal

Research Center of Applied Mathematics, Khazar University, Baku, Azerbaijan

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abbasbandy, S. On convergence of homotopy analysis method and its ...
  • Abdelkawy, M.A., Lopes, A.M. and Babatin, M.M. Shifted fractional Jacobi ...
  • Abo-Gabal, H., Zaky, M.A. and Doha, E.H. Fractional Romanovski–Jacobi tau ...
  • Ahmad, W.M. and El–Khazali, R. Fractional-order dynamical models of love, ...
  • Babaei, A., Jafari, H. and Banihashemi, S. Numerical solution of ...
  • Bhrawy, A.H., Tharwat, M.M. and Yildirim, A. A new formula ...
  • Biazar, J. and Sadri, K. Solution of weakly singular fractional ...
  • Chen, Y. and Tang, T. Convergence analysis of the Jacobi ...
  • Darweesh, A., Al-Khaled, K. and Al-Yaqeen, O.A. Haar wavelets method ...
  • Dehestani, H., Ordokhani, Y. and Razzaghi, M. Combination of Lu-cas ...
  • Dehghan, M. and Fakhar-Izadi, F. The spectral collocation method with ...
  • Diethelm, A. and Free, D. On the solution of nonlinear ...
  • ۲۱۷–۲۲۴, ۱۹۹۹ ...
  • Doha, E.H., Bhrawy, A.H. and Ezz-Eldien, S.S. A new Jacobi ...
  • Ebrahimi, H. and Sadri, K. An operational approach for solving ...
  • Elbeleze, A.A., Kilicman, A. and Taib, B.M. Approximate solution of ...
  • Ghazanfari, B., Ghazanfari, A.G. and Veisi, F. Homotopy Perturbation method ...
  • Guo, B.Y. and Wang, L.L. Jacobi approximations in non-uniformly Jacobi-weighted ...
  • He, J.H. Nonlinear oscillation with fractional derivative and its appli-cations, ...
  • He, J.H. Some applications of nonlinear fractional differential equations and ...
  • Heydari, M.H., Zhagharian, Sh. and Razzaghi, M. Jacobi polynomi-als for ...
  • Hosseininia, M., Heydari, M.H. and Avazzadeh, Z. Orthonormal shifted discrete ...
  • Huang, L., Li, X.F., Zhaoa, Y. and Duan, X.Y. Approximate ...
  • Keskin, Y., Karaoglu, O., Servi, S. and Oturan, G. The ...
  • Khader, M.M. and Sweilam, N.H. On the approximate solutions for ...
  • Kumar, K., Pandey, R.K. and Sharma, S. Comparative study of ...
  • Li, X.J. and Xu, C.J. A space-time spectral method for ...
  • Mainardi, F. Fractals and Fractional Calculus Continuum Mechanics, Springer Verlag, ...
  • Meng, Z., Wang, L., Li, H. and Zhang, W. Legendre ...
  • Mokhtary, P. Discrete Galerkin method for fractional integro-differential equations, Acta. ...
  • Momani, S. and Noor, M.A. Numerical methods for fourth-order frac-tional ...
  • Nazari Susahab, D., Shahmorad, S. and Jahanshahi, M. Efficient quadrature ...
  • Rahimkhani, P. and Ordokhani, Y. A numerical scheme based on ...
  • Rahimkhani, P., Ordokhani, Y. and Babolian, E. An efficient approxi-mate ...
  • Rahimkhani, P., Ordokhani, Y. and Babolian, E. A new operational ...
  • Rahimkhani, P., Ordokhani, Y. and Babolian, E. Numerical solu-tion of ...
  • Rahimkhani, P., Ordokhani, Y. and Babolian, E. Fractional-order Bernoulli functions ...
  • Rahimkhani, P., Ordokhani, Y. and Babolian, E. Muntz–Legendre wavelet operational ...
  • Sadek, L. A cotangent fractional derivative with the application, Fractal ...
  • Sadek, L., Baleanu, D., Abdo, M.S. and Shatanawi, W. Introducing ...
  • Sadek, L. and Bataineh, A.S. The general Bernstein function: Appli-cation ...
  • Sadek, L., Bataineh, A.S., Isik, O.R., Alaoui, H.T. and Hashim, ...
  • Sadek, L. and Lazar, T.A. On Hilfer cotangent fractional derivative ...
  • Sadek, L., Ounamane, S., Abouzaid, B. and Sadek, E.M. The ...
  • Sadek, L. and Algefary, A. On quantum trigonometric fractional calculus, ...
  • Sadri, K., Amini, A. and Cheng, C. Low cost numerical ...
  • Sadri, K., Amini, A. and Cheng, C. A new numerical ...
  • Szego, G. Orthogonal polynomials, American Mathematical Society, Providence, Rhode Island, ...
  • Tavares, D., Almeida, R. and Torres, D.F.M. Caputo derivatives of ...
  • Varol Bayram, D. and Daşcıoğlu, A. A method for fractional ...
  • Wang, J., Xu, T.Z., Wei, Y.Q. and Xie, J.Q. Numerical ...
  • Yaghoubi, S., Aminikhah, H. and Sadri, K. A new efficient ...
  • Yaghoubi, S., Aminikhah, H. and Sadri, K. A spectral shifted ...
  • Yang, Y. Convergence Analysis of the Jacobi Spectral-Collocation Method for ...
  • نمایش کامل مراجع