A Multi-Modal Approach to Twitter User’s Gender Classification

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 67

فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICISE10_181

تاریخ نمایه سازی: 24 اردیبهشت 1404

چکیده مقاله:

Recent advancements in artificial intelligence (AI) and natural language processing (NLP) have revolutionized the identification of Twitter users by leveraging profile information and tweet content. AI and NLP technologies facilitate user identification, behavior analysis, and threat detection by scrutinizing profiles—such as usernames, biographies, and profile images—as well as tweet content. This paper explores the integration of profile and tweet data for user identification, focusing on the combination of profile information and tweet content to improve accuracy. The study also reviews gender and age classification research, noting remarkable improvements from classical methods to advanced deep learning approaches. The study classifies Twitter users' genders Using a multi-modal methodology that includes both image-based (VGG۱۶) and text-based (LaBSE) models. The combined model demonstrated superior performance compared to single-modal approaches, showcasing the effectiveness of feature fusion in enhancing classification precision. This multi-modal method improves valuable improvements for cybersecurity, marketing, and social analysis by providing more reliable user identification in the context of social media.

کلیدواژه ها:

نویسندگان

Sara Bourbour Hosseinbeigi

Department of Information Technology Engineering, Tarbiat Modares University, Tehran, Iran

Amin Saeidi Kelishami

Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

Omid Ahmadi

Department of Information Technology Engineering, Tarbiat Modares University, Tehran, Iran