Application of Artificial Neural Networks for Optimizing Coordinated Development between Agriculture and Logistics in Zhejiang Province: A Case Study on Rural Revitalization Strategies
محل انتشار: مجله علوم و فناوری کشاورزی، دوره: 27، شماره: 3
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 73
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JASTMO-27-3_001
تاریخ نمایه سازی: 22 اردیبهشت 1404
چکیده مقاله:
This study applies Artificial Neural Networks (ANNs) to assess the impact of climate factors on the collaborative development of agriculture and logistics in Zhejiang, China. The ANN model investigates how average temperature and rainfall from ۲۰۱۷-۲۰۲۲ influence crop yield, water usage, energy demand, logistics efficiency, and economic growth at yearly and seasonal scales. By training the neural network using temperature and rainfall data obtained from ten weather stations, alongside output indicators sourced from statistical yearbooks, the ANN demonstrates exceptional precision, yielding an average R۲ value of ۰.۹۷۲۵ when compared to real-world outputs through linear regression analysis. Notably, the study reveals climate-induced variations in outputs, with peaks observed in crop yield, water consumption, energy usage, and economic growth during warmer summers that surpass historical norms by ۱-۲°C. Furthermore, the presence of subpar rainfall ranging from ۲۰-۳۰ mm also exerts an influence on these patterns. Seasonal forecasts underscore discernible reactions to climatic factors, especially during the spring and summer seasons. The findings underscore the intricate relationship between environmental and economic factors, indicating progress in agricultural practices, with vulnerability to short-term climate fluctuations. The study emphasizes the necessity of adapting supply management to address increased water demands and transitioning to clean energy sources due to rising energy consumption. Moreover, optimizing logistics requires strategic seasonal infrastructure planning.
کلیدواژه ها:
نویسندگان
Weiping Wang
School of Logistics and Supply Chain Management, Zhejiang Vocational and Technical College of Economics, Hangzhou, China, ۳۱۰۰۱۸۲.
Youcheng Shan
School of Logistics and Supply Chain Management, Zhejiang Vocational and Technical College of Economics, Hangzhou, China, ۳۱۰۰۱۸۲.
Jianping Jing
College of Foreign Languages, Xinjiang Agricultural University, Urumqi, China, ۸۳۰۰۹۱
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :