SRGAN Enhancement through Autoencoder-Pretrained U-Net with Residual Blocks for Improved Image Super-Resolution
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 25
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MSEEE-4-3_002
تاریخ نمایه سازی: 21 اردیبهشت 1404
چکیده مقاله:
Super-resolution is a crucial task in image processing, enhancing the resolution of low-quality images for applications such as surveillance, remote sensing, and autonomous systems. Traditional methods often struggle to preserve fine details, leading to artifacts and reduced visual fidelity. This study introduces the Pretrained RU-SRGAN, an enhanced Super-Resolution Generative Adversarial Network (SRGAN) that incorporates U-Net architecture, residual learning, and autoencoder pretraining to improve both image quality and computational efficiency, particularly in resource-constrained environments like UAVs. The goal of this research is to evaluate how these architectural modifications can enhance super-resolution performance with limited data. Autoencoder pretraining enables the generator to leverage learned features from low-resolution images, accelerating convergence and improving high-resolution reconstructions. Experimental results show that Pretrained RU-SRGAN outperforms baseline models, achieving a PSNR of ۲۵.۷ dB and an SSIM of ۰.۸۳. These results highlight the model's ability to preserve fine details and structural integrity, making it particularly effective for real-time image enhancement in UAV applications. The Pretrained RU-SRGAN provides a robust solution for super-resolution tasks, balancing high-quality image reconstruction with computational efficiency, and is well-suited for practical deployment in dynamic, resource-limited environments.
کلیدواژه ها:
نویسندگان
Amirreza Rouhbakhshmeghrazi
School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China.
Bo Li
School of Electronics & Information, Northwestern Polytechnical University, Xi’an, Shaanxi, China.
Shayan Nalbandian
School of Software Engineering, Northwest Polytechnic University, Xi'an, China.
Chao Song
School of Electronics & Information, Northwest Polytechnic University, Xi'an, China.
Ghazal Alizadeh
School of Aeronautics, Northwestern Polytechnical University, Xi'an, China.
Mohammad Reza Hassannezhad
School of Aeronautics, Northwestern Polytechnical University, Xi’an, Shaanxi, China.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :