SRGAN Enhancement through Autoencoder-Pretrained U-Net with Residual Blocks for Improved Image Super-Resolution

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 25

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MSEEE-4-3_002

تاریخ نمایه سازی: 21 اردیبهشت 1404

چکیده مقاله:

Super-resolution is a crucial task in image processing, enhancing the resolution of low-quality images for applications such as surveillance, remote sensing, and autonomous systems. Traditional methods often struggle to preserve fine details, leading to artifacts and reduced visual fidelity. This study introduces the Pretrained RU-SRGAN, an enhanced Super-Resolution Generative Adversarial Network (SRGAN) that incorporates U-Net architecture, residual learning, and autoencoder pretraining to improve both image quality and computational efficiency, particularly in resource-constrained environments like UAVs. The goal of this research is to evaluate how these architectural modifications can enhance super-resolution performance with limited data. Autoencoder pretraining enables the generator to leverage learned features from low-resolution images, accelerating convergence and improving high-resolution reconstructions. Experimental results show that Pretrained RU-SRGAN outperforms baseline models, achieving a PSNR of ۲۵.۷ dB and an SSIM of ۰.۸۳. These results highlight the model's ability to preserve fine details and structural integrity, making it particularly effective for real-time image enhancement in UAV applications. The Pretrained RU-SRGAN provides a robust solution for super-resolution tasks, balancing high-quality image reconstruction with computational efficiency, and is well-suited for practical deployment in dynamic, resource-limited environments.

نویسندگان

Amirreza Rouhbakhshmeghrazi

School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China.

Bo Li

School of Electronics & Information, Northwestern Polytechnical University, Xi’an, Shaanxi, China.

Shayan Nalbandian

School of Software Engineering, Northwest Polytechnic University, Xi'an, China.

Chao Song

School of Electronics & Information, Northwest Polytechnic University, Xi'an, China.

Ghazal Alizadeh

School of Aeronautics, Northwestern Polytechnical University, Xi'an, China.

Mohammad Reza Hassannezhad

School of Aeronautics, Northwestern Polytechnical University, Xi’an, Shaanxi, China.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Y. Wei, Y. Li, Z. Ding, Y. Wang, T. Zeng, ...
  • D. Khaledyan, A. Amirany, K. Jafari, M. H. Moaiyeri, A. ...
  • A. M. John, K. Khanna, R. R. Prasad, and L. ...
  • Y. Yang, Z. Su, and L. Sun, “Medical image enhancement ...
  • W. Ren et al., “Wavelet Transform Based Network for Spectral ...
  • H. Chang, D.-Y. Yeung, and Y. Xiong, “Super-resolution through neighbor ...
  • J. Yang, J. Wright, T. S. Huang, and Y. Ma, ...
  • S. Tang and N. Zhou, “Local Similarity Regularized Sparse Representation ...
  • H. Li, K.-M. Lam, and M. Wang, “Image super-resolution via ...
  • C. Dong, C. C. Loy, K. He, and X. Tang, ...
  • J. Kim, J. K. Lee, and K. M. Lee, “Accurate ...
  • A. Rouhbakhshmeghrazi, B. Li, W. Iqbal, and G. Alizadeh, “Super-Resolution ...
  • C. Mollière, J. Gottfriedsen, M. Langer, P. Massaro, C. Soraruf, ...
  • W. Yang, Z. Ma, and Y. Shi, “SAR Image Super-Resolution ...
  • J. Ferdousi, S. I. Lincoln, Md. K. Alom, and Md. ...
  • M. Ullah, A. Hamza, I. Ahmad Taj, and M. Tahir, ...
  • Q. Zhu, X. Fan, Y. Zhong, Q. Guan, L. Zhang, ...
  • Y. Wang, H. Wu, L. Shuai, C. Peng, and Z. ...
  • D. Rathgamage Don, R. Aygun, and M. Karakaya, “A Multistage ...
  • Sub-r-paChayanon, FanMing-Zhong, and ChenRung-Ching, “Super-resolution for traffic signs: a comparative ...
  • P. Nandal, S. Pahal, A. Khanna, and P. Rogério Pinheiro, ...
  • C. Ledig et al., “Photo-Realistic Single Image Super-Resolution Using a ...
  • Y. Wang, Z. Xu, X. Wang, J. He, and X. ...
  • “SRGAN-LSTM-Based Celestial Spectral Velocimetry Compensation Method With Solar Activity Images ...
  • R. Duggal and A. Gupta, “P-TELU: Parametric Tan Hyperbolic Linear ...
  • K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for ...
  • X. Ren and X. Li, “Research on image super-resolution based ...
  • Y. Wang, “Single Image Super-Resolution with U-Net Generative Adversarial Networks,” ...
  • P. S. Hrishikesh, D. Puthussery, K. A. Akhil, and C. ...
  • Z. Wu, “Research on Image Super-Resolution Using Attention Mechanisms based ...
  • B. Sun, B. Chen, Y. Tian, and W. Chen, “TESRGAN: ...
  • M. Hasan, M. Vijay, S. Sharanyaa, and V. S. D. ...
  • A. Rouhbakhshmeghrazi, B. Li, and W. Iqbal, “Color Image Segmentation ...
  • H.-H. Chang, S.-J. Yeh, M.-C. Chiang, and S.-T. Hsieh, “RU-Net: ...
  • S. Leclerc et al., “RU-Net: A refining segmentation network for ...
  • J. Zhang et al., “Multispectral Drone Imagery and SRGAN for ...
  • S. Nasrin, M. Z. Alom, R. Burada, T. M. Taha, ...
  • A. K. Kakumani, L. P. Sree, C. S. Krishna, G. ...
  • K. N. Alkhamaiseh, J. L. Grantner, S. Shebrain, and I. ...
  • M. Z. Alom, M. Hasan, C. Yakopcic, T. M. Taha, ...
  • J. Zhang, Z. Jiang, J. Dong, Y. Hou, and B. ...
  • نمایش کامل مراجع