ML and MCDM for Abnormal Cell Detection in ۵G & B۵G Networks

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 16

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MSEEE-3-3_004

تاریخ نمایه سازی: 21 اردیبهشت 1404

چکیده مقاله:

Self-organizing communication networks are a vital pillar in ۵G and B۵G technology, which operate automatically without human intervention in self-healing, self-configuring, and self-optimizing. Self-healing in these networks predicts and resolves network problems and improves performance with the following three methods in the research conducted: rule-based, algorithmic, and machine-learning approaches. This research used the TOPSIS technique as a multi-criteria decision-making method to rank and score cells after data preprocessing. Then, based on the rank of each cell, it is divided into two classes: normal and abnormal. Then, with three algorithms, decision tree, New Bayes and Random Fars, normal and abnormal cell prediction was performed independently. In the last step, using the combined method of maximum voting, the algorithm was completed and the results showed an improvement in the parameters Precisio=۰.۹۳۹, Recall=۰.۹۶۲, F-Measure=۰.۹۶۸, Accuracy=۹۴.۰۷۱۷.

کلیدواژه ها:

نویسندگان

Reza Moammer Yami

Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

Ali Akbar Khazaei

Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

Saeed Rahati Quchani

Department of Biomedical Engineering, Faculty of Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Moysen and L. Giupponi, “From ۴G to ۵G: Self organized ...
  • Rodriguez, Fundamentals of ۵G Mobile Networks. John Wiley & Sons, ...
  • Mulvey, C. H. Foh, M. A. Imran, and R. Tafazolli, ...
  • L. Luo, Machine Learning for Future Wireless Communications. John Wiley & ...
  • Amirijoo et al., “Cell outage management in LTE networks,” in ...
  • Novaczki and P. Szilagyi, “Radio Channel Degradation Detection and Diagnosis ...
  • Yan, L. Breslau, Z. Ge, D. Massey, D. Pei, and ...
  • Jakobson and M. Weissman, “Alarm correlation,” IEEE Network, vol. ۷, ...
  • Frohlich, W. Nejdl, K. Jobmann, and H. Wietgrefe, “Model-based alarm ...
  • C. Lin, “Large-Scale and High-Dimensional Cell Outage Detection in ۵G ...
  • Wang, J. Zhang, and Q. Zhang, “Cooperative cell outage detection ...
  • Li, P. Yu, M. Yin, and L. Meng, “A distributed ...
  • K. Yeo and Y. Lu, “Fast array failure correction using ...
  • Verma, H. Saraf, and S. H. Gupta, “Prediction of user ...
  • Zhang, “Introduction to machine learning: k-nearest neighbors,” Annals of Translational ...
  • M. Al-Aidaroos, A. A. Bakar, and Z. Othman, “Naï ve ...
  • Nguyen, V. “Anomaly detection in self-organizing network.” (۲۰۱۹) ...
  • Liu, Y. Wang, and J. Zhang, “New Machine Learning Algorithm: ...
  • C. Tseng, Y.-C. Wang, K.-Y. Cheng, and Y.-Y. Hsieh, “iMouse: ...
  • Xia, Y. Owada, M. Inoue, and H. Harai, “Optical and ...
  • S. Faiçal et al., “The use of unmanned aerial vehicles ...
  • Shamshirband, A. Amini, N. B. Anuar, M. L. Mat Kiah, ...
  • Abid, A. Kachouri, and A. Mahfoudhi, “Outlier detection for wireless ...
  • K. Wali, M. N. A. Prasad, N. C. Shreyas, N. ...
  • Z. Erdogan and T. T. Bilgin, “A data mining approach ...
  • Wang, K. Wu, and L. M. Ni, “WiFall: Device-Free Fall ...
  • Yu, H. Chen, W. Zhao, and L. Xie, “No-Reference QoE ...
  • L. Thing, “IEEE ۸۰۲.۱۱ Network Anomaly Detection and Attack Classification: ...
  • Mastronarde and M. van der Schaar, “Fast Reinforcement Learning for ...
  • Pandana and K. J. R. Liu, “Near-optimal reinforcement learning framework ...
  • Lilith and K. Dogancay, “Distributed Dynamic Call Admission Control and ...
  • Xiao, Y. Li, C. Dai, H. Dai, and H. V. ...
  • Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal and Scalable ...
  • He, F. R. Yu, N. Zhao, V. C. M. Leung, ...
  • Liu, B. Krishnamachari, S. Zhou, and Z. Niu, “DeepNap: Data-Driven ...
  • Moysen and L. Giupponi, “A Reinforcement Learning Based Solution for ...
  • Zhang, K. Zhu, and D. Niyato, “A Generative Adversarial Learning-Based ...
  • Papathanasiou and N. Ploskas, “TOPSIS,” in Multiple Criteria Decision Aid, ...
  • Klaine, P. V., Imran, M. A., Onireti, O., & Souza, ...
  • نمایش کامل مراجع