Role of Machine Learning in Designing Dynamic Behaviors for Non-Player Characters in Video Games
فایل این در 6 صفحه با فرمت PDF قابل دریافت می باشد
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
چکیده :
Non-Player Characters (NPCs) are pivotal in creating immersive and interactive experiences in video games, serving as allies, adversaries, or narrative agents that shape player engagement. Traditional NPC behaviors, primarily driven by scripted logic or finite state machines, often lack the adaptability and complexity needed for modern open-world and dynamic games, where player choices and unpredictable environments demand more responsive interactions. Machine learning (ML) offers a transformative approach to designing intelligent, context-aware NPC behaviors, enabling them to learn from player actions, adapt to evolving scenarios, and exhibit human-like decision-making. This paper explores the application of ML techniques, including reinforcement learning, supervised learning, and deep neural networks, in enhancing NPC adaptability, realism, and emotional depth. Through a systematic literature review and detailed analysis of real-world implementations across various game genres, the effectiveness of ML-driven NPCs is evaluated. The study also addresses challenges such as computational overhead, which impacts real-time performance, and ethical considerations, including privacy concerns and potential biases in training data. Findings indicate that ML significantly improves player engagement by fostering more believable and responsive NPCs, yet its implementation requires careful optimization to ensure scalability across diverse hardware platforms and fairness in representing diverse player demographics. These insights underscore the need for continued research to refine ML techniques for gaming applications.
کلیدواژه ها:
نویسندگان
آرمان اسلامی
دانشجوی مهندسی کامپیوتر
مراجع و منابع این :
لیست زیر مراجع و منابع استفاده شده در این را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود لینک شده اند :