Control of hybrid standalone power supply system using artificial neural network

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 25

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MJEE-19-1_022

تاریخ نمایه سازی: 16 اردیبهشت 1404

چکیده مقاله:

Hybrid stand-alone systems are extensively used to supply power in different industries for a wide range of applications. In order to guarantee a steady supply of power to loads despite of variations in load, wind speed, and solar irradiation, these systems need a battery storage system. In standalone power systems, maintaining power quality is essential, particularly in systems that rely on hybrid energy sources. The battery is connected to the network using a bidirectional DC-DC converter with a suitable control mechanism. In this paper, wind turbines and multiple PV are used in parallel and series combinations to ascertain the proper rating of power supply systems. This system uses long short-term memory (LSTM) based artificial neural network (ANN) controllers. The controller for battery has been explicitly designed to guarantee that electricity is distributed equally between the load and the overall generation. Such methods can improve power quality in different areas, such as variations on the supply side from renewable sources and demand-side timescales. The performance analysis using the MATLAB/Simulink platform, and realistic results are generated byimplementing Hardware-in-the-Loop through OPAL-RT modules. The results are verified with various case studies to justify the importance of adopted procedure in detail.

کلیدواژه ها:

photovoltaic ، Maximum Power Point Tracking ، Power Quality ، Hybrid microgrid

نویسندگان

Kaushal Tiwari

RavinDepartment of Electrical and Electronics Engineering, Rabindranath Tagore University, Bhopal, India.dra Nath Tagore University / Department of EE, Bhopal

Kishor Thakre

Department of Electrical and Electronics Engineering, Rabindranath Tagore University, Bhopal, India.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Dash, et al., “DC-Offset Compensation for Three-Phase Grid-Tied SPV-DSTATCOM Under ...
  • Priyadarshi, S. Padmanaban, P. K. Maroti, & A. Sharma, “ ...
  • U. R. Habib et al., “Optimal Planning and EMS Design ...
  • Priyadarshi, S. Padmanaban, M. S. Bhaskar, F. Blaabjerg, & A. ...
  • Pradhan, et. al., “Coordinated Power Management and Control of Standalone ...
  • Priyadarshi, M.S. Bhaskar, P. Sanjeevikumar, F. Azam, and B. Khan, ...
  • Jorge Cervantes, et al, “Takagi-Sugeno Dynamic Neuro-Fuzzy Controller of Uncertain ...
  • Priyadarshi, P. Sanjeevikumar, M.S. Bhaskar, F. Azam, I.B. Taha, and ...
  • Priyadarshi, S.Padmanaban, M.S. Bhaskar, and B. Khan, “An experimental performance ...
  • R. Muduli, et al., “Cell Balancing of Li-ion Battery Pack ...
  • R. Muduli, et al., “Predictive Battery SoC Control for Dual ...
  • D. Bhagiya and R. M. Patel, “PWM based Double loop ...
  • Manisha, M. M. Masoom and N. Kumar, “Comparative Study of ...
  • R. Muduli and K. Ragavan, "Dynamic modeling and control of ...
  • Dash, et.al, “Performance Evaluation of Three-Phase Grid-tied SPV-DSTATCOM with DC-offset ...
  • Narayanan, S. Kewat and B. Singh, “Solar PV-BES Based Microgrid ...
  • Song, Y. Zhao, J. Zhou and Z. Weng, “Reliability Varying ...
  • Koilada Rajesh, “Novel Control of Boost Converter for MPPT of ...
  • نمایش کامل مراجع